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SYNOPSIS

The usual geometrical, statical and physical condi-
tions for the anisotropic, perfectly plastic plate are
given. It is demonstrated that the normal moment cri-
terion usually employed in modern yield-line theory is
identical with the ‘stepped’ criterion of the classical
theory, and that they both correspond to a yield surface,
called the upper yield surface, which satisfies the require-
ments of limit analysis. When the actual yield surface
of the plate is different from the upper yield surface,
then the yield load predicted by limit analysis can
generally not be determined by yield-line theory. It is
not even possible to approach the solution by successive
refinement of the yield-line pattern. The common vield
surfaces of metal plates are compared with the upper
" yield surface, and the yield surface of the arbitrarily
reinforced concrete siab is derived. Finally, the relation-
ship between yield-line theory and limit analysis is dis-
cussed, and it is concluded that the two theories are
consistent in their foundation.

Introduction

Ever since the mathematical theory of plasticity
received its strict formulation, it has been generally
agreed upon that the yield-line theory of Johansen®!
may be placed in the framework of limit analysis.
Following Prager{?), yield-line theory is considered as
a simple and rapidly converging method to determine
upper bounds of the yield load of plates and slabs.
During recent years, however, it has been stated by
the British authors Wood‘3:*! and Jones and Wood ™’
that yield-line theory and limit analysis are incon-
sistent. Arguments for this point of view are provided

by the somewhat different physical conditions that are -

used in the two theories. Indeed, limit analysis rests on
a yield condition expressed in the two bending mo-
ments and the twisting moment (or alternatively in the

two principal moments), whilst yield-line theory em-
ploys a yield criterion involving only the bending
moment in the yield lines,

It is the aim of this investigation to demonstrate
that these controversies are but apparent, and that the
yield-line theory in its usual form rests firmly on the
ground of limit analysis. At the same time the paper
examines in which cases application of the yield-line
theory may lead to a yield load which is correct in the
sense of limit analysis.

Notation

The symbols are defined when they first occur. The
following list gives those which are used repeatedly.
A, B, C = constants of the upper yield surface (posi-

tive yielding) .

a, b, ¢ = constants of the upper yield surface (nega-
tive yielding)

M(g) = value of M, in a positive yield section

mi(p) = value of — M, in a negative yield section

M, = bending moment per unit length of the
section with normal »

My, = twisting moment per unit length of the
section with normal » and tangent s

M, = average yield moment (positive yielding)

m, = average yield moment (negative vielding)

M, = positive yield moment of the ith band of
reinforcement

m; = negative yield moment of the ith band of
reinforcement

n,s = axes of the local co-ordinate system, » being

the normal and s the tangent of the con-
sidered section

P = distributed load per unit area (load para-
meter)
o, = shear force per unit length of the section

with normal »
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R = radius of anisotropy (positive yielding)

r = radius of anisotropy (negative yielding)

T{p) = value of M, in a positive yield section

t(p) = value of — M, in a negative yield section

W = rate of deflexion

x,¥,z = axes of the fixed co-ordinate system

o = angle from the x axis to the ith band of
reinforcement

R = rate of curvature in direction of the axis n

R = rate of twist of the axes n and s

b, = rate of slope discontinuity in the section
with normal »

@ = angle from the x axis to the # axis and from

the y axis to the s axis

Basic assumptions

The plate is considered as a two-dimensional body
occupying the connected region A in the plane z = 0
of the fixed orthogonal Cartesian co-ordinate system
with axes x, y and z. The exterior and interior bound-
ary curves are termed L, and curves along which the
deformations are discontinuous are labelled S. Points
on an arbitrary curve are assigned a local co-ordinate
system with axes n and s, normal and tangential to the
curve, respectively (see Figure I). The orientation of
the local system is determined by the angle ¢, which is
the angle from the x axis to the » axis and from the
y axis to the s axis. The arc differential ds of the curve
is positive in the direction of the s axis.

The influence of the deformations on the geome-
trical, statical and physical conditions is neglected.
Further, the geometrical and statical assumptions are
those generally adopted in plate theory. Thus the
virtual work equation may be expressed as follows:

M, W ‘
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Figure 1: Plate element with stress resultants.
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Here p = p(x,y) and w = (x,y) are the distributed
load per unit area and the deflexion rate, both positive
in the direction of the z axis. The magnitude of the
Ioad is determined by a factor called the load para-
meter, the distribution being fixed.

The positive directions of the stress resultants re-
ferred to the fixed axes are shown in Figure 1. These
resultants and the load fulfil the equilibrium equations:

200, 0,

w oy T
YA
x dy *
MM, M,

My  Wap -0
dy X %

The stress resultants of an arbitrary section with the
normal n are determined by the transformation
formulas:

M, = M,cos?e + M,sin?¢ — 2M,, cospsing

M,s = (M, — M;)cos ¢sing + M, (cos? ¢—sin®¢)
...... 3

Qn = QxCOSCp + QySincP

The curvature rates referred to the fixed axes are
defined as:

MW 2w W

— = — — Y _— —
wxt 7 WY dxdy

ke = —
For curves along which the deflexion rate is not twice
differentiable, the quantity 0, is introduced by:

o= (5)_- (5,

Thus 9, is the rate of the jump in the slope when
the discontinuity is crossed with decreasing #. The
curve of discontinuity is called a yield line, and it is
termed positive or negative according to the sign of
O,

The generalized stresses and strain rates are statical
and geometrical quantities such that the sum of their
products constitute the internal work by a virtual
deformation. The internal work for the plate, i.e. the
expression on the right-hand side of equation 1, con-
sists of two parts, each of which gives rise to the
definition of a set of generalized variables. In both
cases, the moments M,, M, and M,, are chosen as the
generalized stresses. The corresponding generalized
strain rates are then %,, %, and 2%, outside the yield
lines and 6, cos? o, 0, sin? g-and — 26, cos ¢ sin @ in the
yield lines. The two types of generalized strain rates
are respectively called distributed and concentrated.




Physical conditions

It is assumed that the plate may be considered as a
rigid, perfectly plastic body. The yield load is then the
least value of the load parameter at which deform-
ations may occur.

A yield function f{Af,, M, M,,) is a differentiable
function of the generalized stresses with the property
that deformations may be present for f = 0 whereas
stress states for which £ > 0 are impossible. The yield
condition of the plate is a set of inequalities of the
form:

(M., M, M,
where f; is a finite or infinite number of yield functions.
The yield functions must have such a character that
the stress states satisfying the yield condition occupy
a region in (M,,M,,M,,) space, bounded by the
surface:

D=0

F(M,, M, M) =0

where F is a continuous, piecewise differentiable func-
tion of the generalized stresses. The surface F = 0 is
called the yield surface. It is required that through
every point of the surface there exists at least one
plane, such that the surface lies entirely on one side of
the plane (the convexity condition). The plane is called
a supporting plane of the surface.

According to the yield condition, deformations can
only be present when the stress point is on the yield
surface. The relationship between the generalized
strain rates and the generalized stresses is then given
by the flow law. This law requires that the strain vector
(%, %y, 20t} OF (6, cos? o, 8, sin? v, —20, cos @ sin @) is
normal to a supporting plane through the stress point
and directed away from the region of permitted stress
states (the normality condition).

It is assumed that the yield surface for a point of the
plate is the same, whether the strain rates are concen-
trated or distributed. In the former case, however, the
physical conditions may be given in a considerably
simpler form if the quantity 6, is chosen as generalized
strain rate. It then follows from equations 1 and 2 that
the corresponding generalized stress is M,. Hence the
yield condition reduces to:

~m(@) =M, < M) ............ @

The yield surface and the flow law in one-dimensional
stress space may be visualized as shown in Figure 2.

Before use can be made of the yield condition, the
yield moments M and m must be known as functions

B
@) 0 MP) Hn

0

Figure 2: Yield surface and flow law for yield lines.

Yield-line theory and limit analysis of plates and slabs

of the angle ¢. These functions may be plotted as so-
called polar diagrams, i.e. curves r = M(e) and r =
m{¢) where (r, ) are polar co-ordinates.

Evidently the polar diagrams must bear some rela-
tionship to the yield surface of the plate. To investigate
this, a point on a positive yield line is considered. The
stress state is assumed given by the point (M,,, M,,,

M ,,.) which, according to the yield condition, lies on
the yield surface. The strain-rate vector is (6, cos? ¢,
b, sin? @, —26, cos ¢ sin ¢) and a plane orthogonal to
this vector has the eguation:

én C.OS2 (] (Mx - Mxo) + én sin? P (My - Myo)
—20, cos p sino (M, — M,,,) =0

‘The flow law implies that this is a supporting plane to
the yield surface. However, the stress state also satisfies
the normal moment criterion:

My, = My, cos? ¢ + M, sin’ ¢
—2M,,, cos ¢ sing = M(g)

Introducing this and dividing by 8, we get:

M, cos? o + M, sin?¢
—2M, , cospsing — M(p) =0 ...... (5)

For negative yield lines, we obtain analogously:

M, cos* ¢ + M, sin’ ¢
—2M,,cos psin g + m(p) = 0

It follows that the relationship between the yield sur-
face and the polar diagrams consists in the require-
ment that each of the planes given by equations 5 and
6 be a supporting plane to the surface for any value
of ¢. This has been shown by Massonnet and Save‘“’
and also used by Save!?,

Following Kemp®® the condition 4 with associated
polar diagrams is called the normal moment criterion,
and it is the yield criterion which is used in yield-line
theory. It appears that the form of the criterion is
fully consistent with the assumptions of limit analysis
but, because of the dependence developed above, it
may be expected that the existence of a continuous and
convex yield surface imposes some restrictions on the
polar diagrams. This point is exammed in the following
section.

Polar diagrams

We have seen that the polar diagrams define two
families of planes in M,, M,, M, space. The plate will
be a perfectly plastic body if there exists a convex
surface that touches all of these plates.

A necessary, but generally not sufficient, condition
is that the planes envelop a surface. Indeed, if this is
not the case, then the line of intersection between two
neighbouring planes corresponding to parameters o
and ¢ + Ag will not have a limit position as Ap — 0.
Hence there will be no continuous surface that touches
both planes.

A sufficient, but generally not necessary, condition
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is that the envelope is convex. In this case, the envelope
will be a possible yield surface, satisfying the condi-
tions of convexity and normality.

From the differential geometry it is known that the
envelope of a one-parameter family of planes is either
a cylindrical, a conical, or a tangential surface. Of
these three possibilities, the first may be excluded by
mere inspection of equations 5 and 6.

If the envelope is conical, then the planes have a
common point of intersection which is the vertex of
the cone. This point is labelled (4, B, C) for the posi-
tive yield lines and (—a, —b, —c) for the negative
yield Iines. From equations 5 and 6, we then see that
the polar diagrams are:

M(g) = Acos?¢ + Bsin®*¢ — 2Ccos ¢ sing....(7)
m(p) = acos?¢ + bsin®¢ — 2ccospsing...... (8)

As we shall see in the next section, the conical envelope
is, in fact, convex. Therefore we have demonstrated
the following:

Theorem I: Polar diagrams of the form of equations
7 and 8 are consistent with the physical conditions of a
perfectly plastic material.

The third possibility, the tangential surface, is not
convex. This means that, if the polar diagrams differ
from equations 7 and 8, it requires a closer examina-
tion to determine whether they may be compatible
with limit analysis.

In the following, equations 7 and 8 are taken as the
polar diagrams of the plate. Comparing with equation
2, we see that the yield moments transform as the
nermal moments, ie. according to Mohr’s circle.
Therefore the normal moment criterion may be repre-
sented graphically as shown in Figure 3, where the
values of M(¢) and m(qp) are found as the abscissae to
the corresponding points on the two circles. The
radius from which the angle 2¢ has to be measured
depends upon the choice of fixed co-ordinate system.
The two circles are the Mohr circles for points with
positive or negative yielding in all sections. Comparing
with equation 3, the value of the twisting moment is
found to be M,, = T(g) or M,; = —t{(¢) for positive
and negative yielding, respectively, where:

T(¢) = (A — B)cos g sin¢ + C(cos? ¢ — sin® ¢). .(9)
(@) = (& — b) cos ¢ sin ¢ + c(cos? ¢ — sin® ¢)..(10)

This is in agreement with the formulas given by
Johansen'!!, Hence, with polar diagrams given by
equations 7 and 8, the normal moment criterion is
identical with Johansen’s ‘stepped’ criterion. These
polar diagrams are the ones that are usually employed
in yield-line analysis.

The representation provided by Figure 3 combines
the ‘yield surface’ of Figure 2 with the information
contained in the polar diagrams. It is specially suited
for the derivation of the statical conditions for the
yield lines, i.e. the rules governing the intersection of
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yield lines with other yield lines and with the boundary
(details may be found in reference 9).

The quantities 4, B, C and &, b, ¢ are material con-
stants, but they depend upon the orientation of the
co-ordinate system. As invariant strength parameters,
we propose the quantities shown in Figure 3:

M, = ¥4 + B), R = {4~ B} + C*
mo = Ha+b), rt=ia— bR+
They may conveniently be termed the average yield

- moments and the radii of anisotropy. The strength

parameters contain the physical information necessary
in the yield-line theory. They do not define the material
in the sense of limit analysis because the yield surface
is only partially determined.

The upper yield surface

Consider a plate for which the strength parameters
defined in the preceding section are known. The sur-
face, which is enveloped by the families of planes given
by equations 5 and 6, now has to be determined. The
derivation is similar to that of Save!”’, the only differ-
ence being that it is not restricted to orthotropic plates.
First the positive yield lines are considered.

The equation of the envelope is obtained by elim-
ination of the parameter ¢ between the equation of the
planes and the equation derived by differentiation
with respect to ¢. Equations 5 and 7 give:

(M, — A)cos? ¢ + (M, — B)sin*¢

= 2M,, — C)cosgsing ............ (1D
or

(M, — A)cot e + (M, — B)tang

= 2(Mxy - C)
Differentiating and multiplying by cos? ¢ sin® ¢, we
get:

— (M, — A)cos? ¢ + (M, — B)sin? ¢ = 0..(12)
Finally, equations 11 and 12 are squared and sub-
tracted to give:

(M, — Ay (M, — B) = (M., — Cf
This is the equation of a cone with vertex in (M., M,,
M.} = (4, B, C), axis parallel to the plane M,, = 0

Q

1
{—a, —}, :—m(tp)
;. 6) 1 b "
(—b, ) :
! (T

e -
2r R
Mas

Figure 3: The normal moment criterion.




and elliptic normal sections. The projections on the
plane M,, = 0 are the lines M, = 4 and M, = B.
In the same way we obtain from equations 6 and 8:
(Mx + a) (My + b) = (Mxy + C)2
With appropriate restrictions on the constants, these
two cones will form a closed, convex surface, enclosing
the origin, and enveloping both the families of planes.
Hence a possible yield surface is any surface which is
inscribed in the bi-conical envelope in such a way that
all the generatrices are touched. As the envelope cir-
cumscribes all the other surfaces, it will be termed the
upper yield surface of the plate corresponding to the
given strength parameters.

The upper yield surface is shown in Figure 4. Points
on the cones PSTRU and QSTRU correspond to posi-
tive and negative yield lines or to regions with zero
gaussian curvature rate. The vertices P and Q corres-
pond to the intersection of yield lines of the same sign
or to regions with a positive gaussian curvature rate.
Finally, the inclined ellipse STRU corresponds to the
intersection of yield lines of opposite sign or to
regions with a negative gaussian curvature rate.

The validity of yield-line solutions

The idea of yield-line theory is to choose a displace-
ment field where the strain rates are concentrated in
yield lines while the rest of the plate remains rigid.
Thus upper bounds for the yield load are determined.
The question is, under what circumstances can such a
procedure lead to the correct yield load?

The moment state of a point on a yield line is des-
cribed by a point on the upper yield surface or, more
correctly, a point on the generatrix along which the
corresponding tangent plane touches the conical sur-
face. However, the point must also lie on the actual
yield surface, i.e. we have:

Theorem II: A solution involving yield lines can only
be correct if the points on the upper yield surface,
corresponding to the yield sections, lie on the actual
vield surface.

Figure 4: The upper yield surface.

Yield-line theory and limit analysis of plates and slabs

This rather obvious statement is not handy for
practical use because the moment state is not deter-
mined by the direction of the yield line. The normal
moment may be found from equation 7 or 8 and the
twisting moment is given by equation 9 or 10, but the
tangential bending moment is arbitrary. This corres-
ponds to the degree of freedom for the stress point
which may lie anywhere on the generatrix. However,
in the case of a homogeneous plate where all points
have the same yield surface, we may draw some useful
conclusions. It is noted that, if solutions involving
intersecting yield lines of the same sign are to be
possible, the actual yield surface must contain the
regions at the vertices P and Q (Figure 4). Analogously
the region about the ellipse STRU allows the inter-
section of yield lines of opposite sign. Finally the con-
vexity rule implies that, if both types of intersection
are to be possible, the actual yield surface must be
identical with the upper yield surface.

It is tempting to presume that, whatever the form
of the actual yield surface, a successive refinement of
the yield-line pattern will lead to an arbitrarily close
measure of the yield load. Indeed, any surface of
deflexion may be approximated as closely as desired
by a net of yield lines. Nevertheless, the assumption is
not correct and the following limitation is valid:

Theorem III: The smallest upper bound which may
be found by yield-line theory is the exact solution corres-
ponding to the upper yield surface.

The truth of theorem III follows from the fact that
the yield-line solution depends only upon the strength
parameters, and not upon the form of the actual yield
surface. The solution will, therefore, also be an upper
bound if the actual yield surface is replaced by the
upper yield surface and accordingly cannot be less
than the correct solution corresponding to that case.
An example of the application of theorem III will be
given in the next section.

It is & consequence of theorems II and III that it is
not possible to determine the yield load of the plate
by yield-line theory if the mentioned correct solution
involves parts of the upper yield surface which are not
lying on the actual yield surface. This limitation does
not seem to be generally known.

In practice, yield-line theory is useful also for plates
with a yield surface different from the upper yield
surface. It has even been used in cases where the yield
surface has as yet not been known, e.g. the skewly
reinforced concrete slabs which will be considered
later. An estimate of the inaccuracy that must be
envisaged can be obtained by comparing the actual
yield surface with the upper yield surface.

Isotropic metal plates

The yield conditions usually applied for metal plates
are:
max(lMtl’Ile’lMl - MZl) - Mo éo
{Tresca)
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and M2 — MM, + M? + 3M,2 -~ M2<0
(von Mises)

Here M, and M, are the principal moments and M,=
4o,/%, where £ is the plate thickness and o, is the yield
stress of the material (equal for tension and com-
pression). The polar diagrams are:
. Mg} = mly) = M,

M(CP) = m(cp) = 2/'\ﬁMo = My*

The intersection of the two yield surfaces with the
plane M,, = 0 is shown on Figure 5 and the corres-
ponding upper yield surfaces are indicated by dotted
lines. It is noted that the Tresca surface partially coin-
cides with the upper vield surface, whilst this is not
the case with the von Mises surface which only touches
the upper yield surface along two ellipses.

As an illustration of the resulting difference between
solutions corresponding to the two yield conditions,
consider a homogeneous plate of constant thickness,
one-way spanning between two simple supports
(Figure 6). The load is uniformly distributed of inten-
sity p per unit area.

Using the Tresca condition and assuming a yield
line in x = 0, we obtain:

P = SMOIIZ
This is the correct solution, because if the statically
admissible moment field:

M, = Ml — 421, M, = M,, = 0

(Tresca)

(von Mises)

(Tresca)

is inserted in the equilibrium equations, the same value
of p is found.

If the von Mises condition is valid, bounds for the
yield load may be obtained by consideration of the
inscribed and the circumscribed Tresca-surface. We
get:

BM,[IZ < p < 8M */I*  (von Mises)
The upper bound corresponds to a yield line in x = 0.
The moment state in the yield line is given by the point
A on Figure 5, which is incompatible with the bound-
ary condition M, = 0 for y = + 1p/. Hence the solu-
tion is only correct at the limit p — co. The lower
bound corresponds to the moment field given above,
the moment state in the line x = 0 being described by
the point B of Figure 5. The flow law then requires
%, # 0, inconsistent with the fact that only the points
x = 0 are on the yield surface. Therefore also this
solution is incorrect except at the limit p — 0. When
p traverses the interval 0 < p <C oo, the yield load
traverses the interval given above,

It follows from theorem III that any attempt to
improve the upper bound for the von Mises plate,
using more complicated yield-line patterns, is bound
to fail. Indeed, if a value p = AM */I2 with k < 8 was
obtained, then the same pattern would give p = kM, /I2
for the Tresca plate, i.e. a value less than the correct
one. Obviously yield-line theory fails to provide the
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correct solution in this case, but a fairly good approx-
imation is found. This is due fo the fact that the von
Mises condition does not differ too much from the
upper yield surface in the region of interest. For plates
with pronounced twisting, the results would be less
valuable also for Tresca plates.

This very trivial example shows how yield conditions
that permit yield lines lead to less complicated solu-
tions. Further, it is worthy of note that the yield load
for the von Mises plate considered depends upon the
width-to-span ratio p. This may serve as a simple
experimental guide as to which condition best des-
cribes reality.

Anisotropic reinforced concrete slabs

Consider a point of the slab with reinforcement in
directions «; with intensities corresponding to the posi-
tive yield moments M, and the negative yield moments
m; (Figure 7). For our purpose, the calculation of M,
and m; need not be specified further. It is then usual
to assume (Fohansent!!, Jones and Wood®) that the
polar diagrams are:

M(p) = ZM;cos?(p — o)
I

and
m{g} = Zmy; cos? (p — o)

It is easily seen that these functions are of the form
referred to in theorem I, with:

A = ZM;cos?«;, B = ZM,;sin?«,
i i
C = —ZEM,;cos «; sin «;
;

a = Zm;cost oy, b = Zm;sin? o,
i i

¢ = —Zmy; cos «; sin oy
i

The strength parameters are:
M, = }ZM;, R? = }ZM;M;cos 2(o; — o;)

i i
n, = tZmy,

¥
The yield condition of the slab may be taken as the
normal moment criterion if it is assumed to be valid
not only in the yield lines, but everywhere in the slab.
In words the yield condition may be expressed as fol-
Iows: if the bending moment A, in a section with the
normal » attains the corresponding yield value M(yp)
or —m(gp), then strain rates %, or 8, may be present in
the section. If also neighbouring sections are at yield
the strain rates may be distributed, otherwise they are
concentrated. More formally the yield condition is
written:

f‘P(st My: Mxy) é O, g(P(Mxy My; Mxy) g 0:

where the infinity of yield functions f, and g, corres-
ponds to the supporting planes, i.e.:

fo = (M, — A)cos?¢ + (M, — B)sin?¢
_Z(Mxy

r? = $Zmym; cos 2(w; — o)
L

— C)cospsin g
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ge = — (M, + a)cos?¢ — (M, + B)sin’ ¢
+2(M,, + c)cos@sing

The yield surface becomes identical with the upper
yield surface of the plate {(Figure 4). Therefore the
yield condition may also be expressed:

(My — CF — (M, — A) (M, — B) < 0!
(Mo + OF = (M, + & (M, + B) = 0]
with the restrictions:
—a=M, =4, —-bSM,<B

According to the ‘stepped’ criterion of Johansent!?,
the twisting moment in a positive yield line is given as:

T(p) = ?’Mi cos (p — o) sin (p — «;)

.. (13)

= (4 — B)cos ¢sin ¢ + C(cos? ¢ — sin? g)

in agreement with equation 9. The same result and the
corresponding expression for #(¢} may also be found
from consideration of the upper yield surface.

Whilst the yield condition in terms of the normal
moments is familiar, the form 13 and hence the shape
of the yield surface have hitherto only been known in
the isotropic and orthotropic cases. The slab is said to
be orthotropically reinforced when the reinforcement
has two orthogonal axes of symmetry. If these direc-
tions are taken as the axes of the co-ordinate system,
both the constants C and ¢ take the value zero. The
corresponding yield surface with both vertices in the
plane M,, = Ois derived by Nielsen*® from consider-
ation of a plate element. Save'” obtains the surface
from the normal moment criterion and the polar
diagrams. Kemp®! also uses the normal moment cri-
terion, but the resulting condition is expressed in a
co-ordinate system with axes in the principal moment
directions ; hence C and ¢ are different from zero. The
yield curve in the principal moment plane M,, = 0
depends upon the angle between the principal moment
axes and the axes of symmetry for the reinforcement.
In general it is formed by two hyperbolas {(cf. Figure 4).

In the case when the plate is isotropic we get 4 =
B=M,a=5b=m,and C = ¢ = 0for any orienta-
tion of the co-ordinate system. The curve of inter-
section with the principal moment plane is the
well-known square yield locus.

Discassion and conclusion

We are now in a position to examine the contradi-
tions which, it is claimed, exist between yield-line
theory and limit analysis. The arguments have been
summed up by Jones and Wood®®' for the isotropic
slab as follows.

(1) The *stepped’ criterion insists on a specific value of
the tangential bending moment M,; this is not the
case with the ‘square’ criterion.

(2) The flow law and the ‘square’ criterion require
that positive and negative yield lines intersect each
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other at right-angles. This limitation is not valid in
yield-line theory.

(3) The normal moment criterion specifies only the
normal bending moment, the ‘square’ criterion

" requires that the twisting moment is zero.
Objection (1) is simply not correct and must arise
from a misunderstanding. On the contrary, it is the
freedom of the tangential moment which is the clue to
the simplicity of yield-line analysis. Item (2) refers to
one of the statical conditions for the yield lines that
may be derived on the very. basis of yield-line theory
(cf. Braestrup'®). In the isotropic case, they are fam-
iliar and are discussed by Johansen'®, The fact that
yield-line analysis often involves statically inadmissible
yield-line patterns only reflects that it is an upper-
bound technique. Finally, referring to (3), we have
shown that, with the usual polar diagrams, the normal
moment criterion and the upper yield surface are dif-
ferent expressions for the same physical conditions.
The normal moment criterion is the most practical
for upper-bound determination by yield-line analysis
because it only involves one stress resultant, On the
other hand, to determine whether or not a given
moment field is statically admissible, it is more con-
venient to use the equation of the yield surface than
to test all sections against the normal moment
criterion.

Jones and Wood'®! write as follows concerning the
normal moment criterion: “Such a criterion is useless
within the strict framework of [imit analysis, which
must develop its own idealized criteria of yield. Until
yield-line theory and limit analysis employ the same
criterion of yield, they must go their own separate
ways.” This conclusion appears to be unfounded and,
in our view, it would be unfortunate if it were not
corrected.

This does not mean that yield-line analysis and
upper-bound determination for plates and slabs are
identical concepts. We have seen that, when the yield
surface is different from the upper yield surface, yield-
line theory is not sufficient, and it may be profitable
to search upper bounds by other methods. On the
other hand, yield-line theory gives an approximate
solution to the entire plate problem and not only a
value of the yield load. At any rate, it would be
deplorable if only the differences were noted, and the
two theories were allowed to drift apart without their
mutual connexion being explored.
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