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SUMMARY

Two different methods are presented for the analysis of cable
systems supported by elastic boundary structures: 1. the displace-
ment method applied to the complete structure (cable system plus
boundary structure}) and 2. a mixed method, in which the horizontal
components of the cable forces are introduced as extra unknowns in
addition to the generalized node displacements. The basic theory
of the two methods is presented, and the governing nonlinear equa-
tions are derived. The Newton-Raphson iteration method is used for
the solution in both cases.

Finally, a numerical example is presented (cable net supported
by ring beam), and the results obtained by means of the above two
methods of analysis are compared.

1. INTRODUCTION

The development of thecoretical methods for the analysis of
hanging roof structures began in about 1960. The early work on
this subject was based on a treatment of the cable structure as
an equivalent continuous system, for which governing differentiai
or integro-differential equations were derived, see Schleyer [1o]
and reference |6] . However, with the increasing use of computers
it gradually became evident that more satisfactory results could
be obtained by treating the cable structure as a discrete system.
This method leads to a system of nonlinear equations with a finite
number of unknowns, which can be solved efficiently by computer.
Because of these advantages, the discrete approach has been used by
the majority of research workers since about 1965. During the
1960s, the theoretical work was devoted mainly to the analysis of
plane cable structures and cable nets supported by rigid boundary
structures, see for example references (2] , [3) , [7] , [8] , [11!
and (12} .

The more complex problem of the analysis of cable systems
supported by elastic boundary structures is of considerable prac-
tical interest, as this type of structural system is often used in
practical applications. Serious theoretical work on this type of
problem began about four years ago, and it is only recently that
satisfactory methods of solution have been developed. The present
paper describes two methods that are suitable for the analysis of
cahle systems supported by elastic boundary structures, namely,
the displacement method and a mixed method.

2. NOTATION
Indices.~ Subscripts: the range of a lower case Latin sub-

script depends on the type of quantity to which the subscript is
appended. Tor example, Er is a generalized displacement component.

The number of such components is n (the number of degrees of free-
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dom of the structure), and the range of r is therefore 1 to n.
superscripts: lower case Greek superscripts denote element numbers
and have the range 1 to N, where N is the number of elements. Lo-
wer case Latln superscripts enclosed in brackets denote iteration
count. The letter T used as a superscript denotes transposition
of vectors and matrices.

summation convention. - This convention is used for subscripts

but not for superscripts. This means that any term in which the
same subscript appears twice stands for the sum of all such terms
obtained by giving this subscript its complete range of values,
vectors _and matrices. - A column vector is denoted by a typi-
cal component enclosed in braces or by a lower case letter with a
tilde written below the letter. A matrix is denoted by a typical
component. enclosed in square brackets or by a capital letter with

4 tillde written below the letter.

3. THE DISPLACEMENT METHOD
3.1 ELEMENT ANALYSTS
The structure is divided into a number of elements connected

at nodes. The total number of elements is denoted by N. Consider

one of the elements and let the generalized displacements of the
nodes belonging to that element be denoted by x4, i=1,2 <ol
Tt will be assumed that the Xj ere defined with reference to a
fixed global coordinate system.

In the displacement method we use approximate displacement
functions for the elements determined by the generalized node dis-
rlacenents, so that the geometrical configuration of an element is
completely and uniguelv determined by the generalized node dis-
placemeonts Xi belonging to that element. The approximate dis-
rlacements must also satisfy the condition that compatibility of
node: displacements for two neighbouring elements ensures displace-
ment compatibility along the interelement boundary. Finally, the
set of approximate displacement functions for an element must in-
clude all finite rigid-body displacements of that element.

Strain measures. The displacements throughout the element are
determined by the generalized node displacements Xy « We now in-
troduce another set of quantities, which determine the element dis-
placements. Some of these, the strain measures ey , determine the
shape and thus the strains of the element, while the remaining
quantities gy determine rigid-body displacements of the element.
The relation bhetween the two sets of quantities may be expressed

by a transformation

xi =Xi(el' 92: cer ¢ Q4. qzr ene) (1)

i=1, 2, ..., n1 .

with the following properties:

1. The transformation (1) is one-to-one and continuous. Denoting
the number of €y and dy -components by ny and n; , respect-
ively, we have n, = n, + ny, . Since the transformation is one-to
“one we may solve” (1) uniquély for e, and dp » thus
e

y = uk(xl, Kot eeey X_ ), Qg = qg(xl, Xor eeey xnl) . (2)
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2. The strain measurecs o are, 1n general, nonlinea: tunct ions
of the Xi « The components Cx are the magnitudes of certain quo-
metrical "quantities (e.g. lengths, angles}, which remain uncheangud
Yaen the element ig given a finite rigid-body displacement (i.e.
Tho i @re socalled Objective invariants) .

3. The quantities 49y have the following pProperties: Suppose
that the €k are kept constant but that the gy vary. The cor-

mention that for g straight pin-jointed rod there will be only one
strain measure, which may be chosen as the elongation (2-25) of
the rod, & being the current length of the rod and 25 the length
in the reference state. Por a pPlane flexural element without shear
dcformations, there will be three strain measures (see Fig.l), and
these may be chosen as the elongation of the chord-line and the

angles ¢l and ¢®5 + See also reference [9].
1 P, 2 Pa
e . -
Fig.l

Strain gnergy. It is assumed that the element is elastic and

that the strain €Der9Yy U of the element is a function of the

qeneralized node displaqements Xi - As the strain energy is de-
termined by the state of strain in the element, it can be shown

that o depends Oonly on the strain measures. Thus

U = U(el, €or wuu enz) .

As the €x are functions of the Xi + see (2), we find for the
pPartial derivatives of U with respect to X; @

U _ au 9% (3)
9x . Je X, d
i k i
2
3%y gy ey e S L L)) o
o ’
dX.a3x aek ax, 9x axi aekaez X

3.2 SYSTEM ANALYSIS

We number the elements 1, 2, ««., N, and in the following we
shall use a superscript o« to denote quantities associated with
element No. g (e.qg. X2, e, ya, etc.).

The generalized node displacements of all the nodes in the
structure (defined With reference to the global coordinate system)
are called bre ¥ =1, 2, .., n . There is a simple connection
hetween the X;% and the £y + since any node displacement
xi" associated with element o is equal to one of the components

fr .
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Equilibrium conditions. As far as the support conditions are

concerned, we shall assume, for the sake of simplicity, that the

support nodes are functions of the Er—values belonging to these
nodes, the generalized forces corresponding to the reactions being
given by —BUS/Bﬁr ;, Where US(Cl,EZ, ...) 1is a potential depend-
ing on the generalized displacements of the support nodes. As a
simple example, the 0JU”/3f,. may be linear functioens of the ap-
propriate /.-values, and the coefficients of the £ in this
linear expression may then be regarded as a kind of spring con-
stants. It is well known that rigid supports are often approximated
by linear elastic supports with very large spring constants for the

purrvose of convenient computer analysis.
The total elastic potential of the structure is the sum of the

strain energy of the elements and the potential of the elastic sup-
N

ports, EE;UQ + US . The equilibrium conditions will be derived by
=

means of the principle of virtual work. We express the fact that
the work of the external loads corresponding to any compatible, in-
finitesimal displacement of the structure, eguals the increase in
elastic potential thus

o S
az;idu +av® = p_ag_ , (5)

where the p are generalized forces corresponding to the external
loads. (5) may he written in the form

N
d o 5 & _
agr{ 2;; S T e

and since U% 1is a function of the generalized node displacements
xi“ belonging to element o , and the dgr are arbitrary, we ob-

N
a  Ax% 5
2(99-— —-i) + 2 =p (6)

a=1 sz aE"r aEr

tain

where the partial derivatives Bxg/ai have the constant values
zero or unity, see the previous rdmarks about the relation between
x;% and ¢, . The equations (6) express the egquilibrium condit-

ions for the structure. The unknowns in (6) are the generalized

node displacements §,. , and the number of equations equals the
number of unknowns.

Solution _of nonlinear equations, the_ Newton-Raphson_method.

T P e A BLR it B A LR i e Sk e ey AR ek Sy P P P N e S e P Sy By v e v i e e S e e e S A o At Sos B vee et e S

The governing eguations (6) are generally nonlinear in the &, . In
the following, the Newton-Raphson method will be used for the
solution, so that each step of the iteration process involves the
solution of a linearized approximation to the nonlinear equations
(6). The iteration process is specified by the following formula:



N (K}
82( SuT US) N (ki
n=1 e (k+1) = (p - ) U“+Ub ) (73
TR s r Dﬂr
oy Uhg a=1
where
i o . n
At _ag® Bxi 52y% ~ Bxi a2 axj
el _— .
DCr ax; agr agr a(Ss BLr Bx: ng Bﬁs

In this formula, the k'th iterates Er(k) are used to evaluate
the residuals on the right-hand side and the coefficients of

d&ék+1) on the left-~hand side. Having solved the set of linear
equations (7), the (k+1) 'st iterate is given by

p k1) AL I ar (k+1) _ (8)
r r r

The symmetric matrix of coefficients in (7) is called the stiffness
matrix of the Structure and is a sum of contributions from the ele~-

-.——._—-..._..._—-—-——-.—_._.__—-_—

ax% ax ™
J

2.0
ments and the elastic supports. The [ LY ] form the stiffness
1

matrix of the element (for given a); this matrix may be written as

kb P =it i . Hy

a sum of the geometrical and the elastic stiffness matrix, see (4).
Properties of the theory. The introduction of strain measures

that are objective Invarianis is an important feature of the
present theory. By taking the strain energy of an element to be a
function of the Strain measures, we satisfy the important condition
that a finite rigid-body displacement should not change the state
of stress in an element. Approximations may be introduced in a
rational manner. we may use exact expressions for the strain
Measures as functions of the node displacements but introduce ap-
proximate expressions for the strain energy functions U%* of the
elements. As a further approximation, we may use approximate ex-
pressions for the strain measures that are not exact cbjective in-
variants. A more detailed derivation of the theory is given in
the writer's paper [9], see also Argyris & Scharpf [1].

3.3 STIFFNESS MATRICES

simple tension elements and flexural elements. It is not possible
Wwithin the scope of the present paper to present detailed express—

§1@E;g_ggg§;9§_glgmggg. This is a straight, pin-jointed rod,
which is perfectly flexible. The global components of the node
displacements are used as generalized displacements (¢ components
for the element), and the elongation of the rod is used as strain
measure. The element is assumed to be linearly elastic. The rel-

evant formulae for the strain energy of the element, the internal
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force as a function of the elongation, and the stiffness matrix of
the clement, may be found in reference [91.

arc based on a simplified quasi-linear theory in which the rotat-
lons are assumed to be small but in which the effects of the dis-
placements (the changed geometry) are taken into account when
formulating the equations of equilibrium. The global components of
displacements and rotations of the nodes are used as generalized
displacements (12 components for the element). There are 6 strain
measures, which include the elongation of the chord-line and cer-
tain angles associated with the bending and torsion of the element.
These strain measures arec approximate in the sense that they are
not evxact objective invariants. Formulae for the strain measures
as functions of the generalized displacements, the strain energy of
the element, the generalized internal forces as functions of the
generalized displacements, and the stiffness matrix of the element,
are given in reference [9].

4. A MIXED METIOD

We consider a cable net supported by an elastic boundary
structure in the form of a ring beam, see Fig. 2. 1In the simpli-
fied system used for the analysis, the cable net is represented by

Fig. 2

0

a series of simple tension elements and the ring beam is represented
by a series of straight flexural elements. A global cartesian co-
ordinate system XYZ, with vertical Z-axis, is introduced. It is
assumed that the cables are in vertical planes in the initial state
and that the horizontal projections of the cables in this state are
straight lines parallel to the X- and Y-axes. The cables are as-
sumed to be shallow, the elastic cable stiffness EA is assumed
to be constant along a cable, and the external loads acting on the
cable net are assumed to be vertical forces at the nodes (the lat-
ter assumption is not strictly necessary, but it makes the result-
ing lformulae simpler).

The mixed method may be derived from the previous results by
the introduction of certain approximations based on the following

assumptions:

1. The strains of the cable elements are small.
2. The horizontal components of the displacement of a cable net
node are small compared with the vertical component.

The following notation is introduced in connection with the
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present method:
Diftcrence operator A. Let ga quantity £; be defined at all

T S e s e e "

cable net nodes i . For a directed element 1j of the cable
net we define (see also Fig.3):

Afij = fj fi
o— ———0
j We shall Occasionally omit the
Subscripts and just write Af r 1t
Fig.3 being understood that the differ-

ence is to be formed corresponding
to a given orientation of the element by Subtracting the f-value of
the initial node from the f-value of the terminal node. T
Position vector of node i, initial state: Ti = Ixy yj z3]1° .
Displacement vector of nade 1 (displacement measured from initial
state) : ¥i = luj vy wy]

s - T
Arij = Ij I, = [Ax Ay Az]ij ’
By.. = V. - v, = [Au Av awlT, .
-..iJ -..j -..i lJ

In the following we shalil occasionally omit the subscripts i,j
(which dencte node numbers in the cable net),
The length of element ij js denoged by:

Initial state: g% = (ArT Apys

Current state: ¢ =[(Ar +ay)T (Ag-+Ay)]% .

The cables are numbered Consecutively, and positive directions
are introduced on the cables Corresponding to the pPositive X- and
Y-directions, gee Fig.2. Consider NOwW an element ij on cable
Na. K corresponding to the X—direction, see Fig.,2, Using assump-
tions 1. and 2. and neglecting small quantities, the following ap-
Proximate expression is obtained for the elongation of the element
(measured from the initial state) :

$ - g% — %? (8% Au + Az Aw + %sz) . - (9)

In this and the following formula, the differences corresponding to
the A-terms are to be evaluated for an element orientation co-
inciding with the orientation of cable K . As the external loads
consist of vertical forces, it follows from our assumptions that
the horizontal component of the internal force in cable elements is
constant along a cable, and we obtain the approximate formula:

_#_/}_L_ _ - Az + Aw/2
[U{}{)EA] - Uok™ Uy 2: {___ZE_Z_ Aw} , (10)

cable K

where the summation includes all the elements of cable X, H ang
H* are the constant horizontal components of the cable force in
the current state and the initial state, respectively, Uijg and
Usk are the X-components of the displacements of the terminal
nodes of cable g ¢+ See Fig.2, I, = X2R-X1gx 1is the length of the
horizontai Projection of cable K, and the constant A is given by

-7~




*3
DD (&—-— . (11)
cable\ Ax?

In order to obtain formulae for the cables corresponding to the
Y-direction, x and u in formulae (9) and (10) are replaced by ¥
and v , respectively.

The strain cnergy of a cable element 1ij may be written in
the form
o

S r
EA Ax?

u = (12)

where H is given in terms of the displacements by (10). It will

be seen that U depends on the vertical displacements of the cable
nodes and on the horizontal displacements of the terminal nodes of

cable K , i.e. we have eliminated the horizontal displacements of

the intermediate nodes.

If we now form the equations of equilibrium according to (6),
using the above approximate expression for the strain energy of the
cable elements, the following equations are obtained (the partial
derivatives of the function ¢ , which appear in these equations,
should be disregarded at a first reading):

o e e e e i i o e e s e e e e e e i e e S et S S —

4
b _ _§ : Az + Aw - -
ng = H g Py 0o , {13a)
v=1 ijv

where the subscripts 1ij indicate that
the term enclosed in brages is to be

P evaluated for the directed element ijv ’
Fig.4 see Fig.4 , pj is the Z~-component of the
external load acting at node i , and d = ]Ax| or d = |Ay| de-

pending on whether the projected element is parallel to the X- or
Y-axis, respectively.

Equations of equilibrium_of ring beam. The components of dis-

placements and rotations of the ring beam nodes are denoted by Er '

and the strain energy of ring beam element No. o is denoted by U ’
which is a function of the £, . The potential of the elastic sup-
ports is denoted by us » and this is also a function of the £, .
We shall assume that the terminal nodes of the cables coincide with
ring beam nodes, so that the displacements of nodes 1K and 2K
appearing in (10) are, in fact, contained among the Er » The 6
equilibrium conditions for node g on the ring beam have the form
(see also Fig.5)



a4 ¥ 7 ]
y = N, + p 0
(dsr) node g K ®
iHJ + py 0
A o S Az +£\w) ( Az + Aw) _
= | o u” + U - H——[—-’— + H—-[—r-_ +p) = |0
[d“r(é; )J node g ( Ax gj By gi z {13b)
0 0
J
0 0
i _0 | | 0]
i
o—=— K
§Q§§§§§§::
Fig.5
where P
9 ]2 8 3 3 3 3
3 T |3 BV 3w J6_ 36 306 !
rinode g X Y z node g

B, D Gz are the components of the rotation of joint g , and

¥
px, py, P are the components of the external load acting at node
g. rHe pfus sign in the H-terms should be used when node g 1is
the initial node of the cable in question, and the minus sign, when
node g is the terminal node of the cable.

Conditions of cable_compatibility. We also have equation (10)

T e e e e e —— i e . o o

which determines the horizontal component of the cable force as a
function of the displacements,

1 .
Az + SAw
3o E 2 AL &
—_— = U..— u. 4+ —x — Awp = |=—(H-H¥) | = 0 . (13c)
aHK 2K 1K cable X { Ax } [EA ]K

Equations (13a, b, c) form a system of nonlinear equations for the
determination of the unknown node displacements wi and &, and
the horizontal components of the cable forces Hg . These are the

T T e e i e et e e e e D e e L e e e e ey e S e i R S e o e

T — et e o s e b e T - e o

¢ = E v r,) + US(F,r) + 2: H—12— aw
5] all cable

elements

lAIJ Wy 2
- § :——-—, (H-H™) *-H(u, ,~u,_ )} - E:p-W-- 2 :p £ ' (14)
7 jz EA 2K T1K K T ivi =" r°r




where it has been assumed that the components of the external loads
p; and p, are independent of tLhe displacements. It will now be
seen that the governing equations (13a, b, c¢) can be obtained by
putting the lst derivatives of ¢ with respect to the variables

+ Ly and Hyg equal to zero, as has already been shown in the

eéuations.
The Newton-Raphson method will again be used for the solution
50 that we have the iteration formula .

-
b=

27 ey fae Y o
ar._ ar °s B ar !
r s r
where the complete vector of unknowns is denoted by {z_}. (15)
corresponds to the linearized form of equations (l13a, b, c). An

additional simplification will now be introduced in connection with
the linearization. The vertical displacements w, of the ring
beam nodes are generally small compared with the Vertical displace-
ments of the cable net nodes. Therefore, when calculating the left
-hand side of (15), we put dwg = 0 in the part of

(3°¢/9r 375)drg that is due?to the term I{HAw(Az + %Aw)/d} in
the expression for ¢ . 1In this way the following linearized
cguations are obtained (in which the index denoting iteration count
has been omitted)},

4
_ A (dw) Az + Aw _ §_ 3¢ '
{H =gt aH e } = { ——awi} , (16a)
v=1 lJv
(. an., ]
a“(f y® +US) S 5%
e 3 - | +an (=0~ - } , (16b)
IE_ BE S J 9k,
r 5 node g 0 node g
0
0
| 0
_ 2 : Az + Aw AL _ _ 2%
du2K dulK+ ;-_TT"_'A(dw)t (%K dH) = o - (l6c)
K K
cable K

These equations may be written in matrix form as follows:

A
DI 0 Zw)] [av] —3%%-
i

of k(D) ¥ ag =_2§% (17)
ST ” r
z'w) YT F EGlsd 20
T ]9H
B

'he matrix of coefficients is symmetrical because the components of



this matrix are 2nd derivatives of the potential & . 0 denotes

a rullmatrix, and the dependence of the submatrices on the unknowns
has also been indicated. The submatrices are obtained as a sum of
contributions as lollows:

Matrix D : A tension element connecting two internal cable
net nodes i and j contributes:

Column te be multiplied by: dw, dwj

To bhe added to equation corres— ;2 Hl 1 -1

ponding to cable net node No. J: df -1 1 .

A tension element connected to node g on the
ring beam contributes only the term dw, H/d

in the equation corresponding to cable Het node
j + see Fig.6.

Makrix Z : A tension element ij on

Fig.e 77777 E
cable K contributesg:

In equation correspvonding

.01 _
i: —i-[(z+w)i (z+w)deHK :
to cahle net node No.

K %[(z+w)j—(z+w)i]dHK .

Matrix Y : For a cable K corresponding to X-direction:

At node 1K, projection in X-direction: -1 =« dHp ’
At node 2F, projection in X-direction: +1 x dHy g

Similar expressions hold good for the Y-direction.
Matrix K : This is the stiffness matrix of the ring beam as-

sembled from the stiffness matrices of the flexural elements, see
Section 3.3, and including contributions from elastic supports,

Matrix F : This is a diagonal matrix, the diagonal component

corresponding to cable K being given by —(AL/(EA))K .

follows: Kirrholm & Samuelsson's method involves a preliminary

Alsm, the iteration method used for solving the nonlinear equations

mcthod.

-

>« NUMERICAL EXAMPLE

We now consider a structure of the type described in Section
4, i.¢. a cable net Supported by a ring beam. The centreline of
the ring beam is a Space curve determined by the intersection be-
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tween the saddle-shaped roof surface and a vertical circular cylin-
der (diameter = 104 m). The ring beam is agsumed to be a rein-
forced concrete structure, the cross-—section of the ring beam being
rectangular as shown in Fig.7. The cross—-section of the beam
twists as we move along the perimeter, the longer side of the reci-
angle being parallel to the tangent to the roof surface in the di-
rection normal to the boundary.

In the analysis, the cable net is represented by 9 hanging
cables (corresponding to the X~direction) and 9 bracing cables
(corresponding to the Y-direction). The ring beam is made up of 28
straight flexural elements and is supported by vertical columns at
t+he nodes betwcen the flexural elements (the effect of the columns
is represented by elastic supports which produce vertical reactions).
Nodes 1 and 3 on the ring beam (see Fig.7) are prevented from mov-
ing in the Y-direction, and node 2 is prevented from moving in the
X-direction (these horizontal constraints are accounted for in the
analysis by means of elastic supports with very large spring con-
stants) .

The stiffness parameters of the cable net have the following

values:

B = 160000 MN/m? ’

832 MN per cable
832 MN per cable

Hanging cables: EA
Bracing cables: EA

The flexural elements making up the ring beam are assumed to
be elastic with a modulus of elasticity of Eg = 2x 107 MN/m? .
The cross-sectional constants have the values shown in Fig.7.

Initial _state. The geometry of the cable net is determined as
the equilibrium configuration corresponding to the following load-
ing: DPrestress in the cables, weight of roof cladding and cables
on the net, and weight of the ring beamn, and it is also specified
+hat the cables should be in vertical planes in t+his state, which
1s called the_initial_state. The method used for determining the
initial state is presented in reference [9]. It is found that the
cable net nodes are located very nearly on a hyperbolic paraboloid
in the initial state, and the horizontal components of the cable

forces in this state are given by:

Hanging cables: 2.60 MN per cable
Bracing cables: 2.60 MN per cable

Loading. The cable net is calculated for the following vert-

ical load on the roof surface (measured per unit area of horizontal
projection in the initial state) :
pead load (weight of roof cladding and cables): 600 N/m?2
Live load {snow): 750 N/m?

The two loading cases referred to in the following are given
by:
Loading case l: Uniformly distributed dead load plus

live load on the whole roof.

Loading case 2: Dead load on the whole roof plus snow
load on half the roof (i.e. for y>0).

The displacement_method. A FORTRAN program was developed for

the analysis of structures of the present type by means of the dis-
placement method as described in Section 3. The unknowns are the
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displacements and rotations of the ring beam nodes and the displace~
ments of the cable neot nodes (a total of 375 unknowns). The results
of the analysis of tho two loading cases are presented in Figs. 7
and 8. It was found that four or five iterations per loading case
were required in order to obtain the desired accuracy
(max|d# .| s max|s| < 1077 should be satisfied for both the set of
cable net displacements and for the set of ring beam displacements).
The calculations were performed on an IBM 370 coemputer using single
precision arithmetic. The Symmetry conditions of the results were
satisficd to an accuracy of four to five significant figures, in-
dicating thal the linear equations solved in the Newton—-Raphson
tteration arce quite well-behaved.

th_m;ggd_mgthg@. A FORTRAN program was also developed for
Lhe analysis of this type of structure by means of the mixed method.
The total number of unknowns is in this case 255 . The results of
the analysis are not presented here as they agree closely with the
results obtained with the displacement method . Three or four jiter-
ations per loading case were required in order to obtain the de-
sired accuracy.

Comments. It will be seen that the behaviour of the Present
rather flexible structure (cable net Supported by elastic ring
beam) differs considerably from that of a cable net with rigid sup-
ports. Consider the case of a uniformly distributed load on the
cable net (loading case 1). TIn the present example (elastic ring

small. This is in contrast to a cable net with rigid supports, in
which the forces in the bracing cables are Significantly reduced
for a loading of this type.

6. CONCLUSIONS

Two methods have been Presented for the analysis of cable
systems supported by elastic boundary structures: l. The disg-

Plus boundary Structure) and 2. 2 mixed method, in which the un-
knowns are the generalized node displacements of the boundary
structure, the vertical components of the cable net node displace-
ments, and the horizontal components of the cable forces. 1In both
cases the Newton-Raphson method was used for the solution of the
governing nonlinear equations.

Numerical examples show that both methods can be used success-
fully for the analysis of this type of structure. No difficulties
were experienced with the convergence of the methods even when the
boundary structure was quite flexible, Comparing the two methods,
the following conclusions can be drawn: The main advantage of the
displacement method is its generality - the method is not re-
stricted by the simplifying assumptions and approximations inher-
ent in the mixed method (shallow cables in vertical planes etc.).
The mixed method, on the other hand, has the advantage that, for
A given structure, the number of unknowns appearing in the eguat-
ions of the mixed method is considerably smaller than the number of

unknowns in the equations of the displacement method, with correspond-

ingly reduced requirements to computer time and storage capacity.
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