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NOTATION

T = Torsional moment

n, = The force in the reinforcement per unit length
(in the stirrup direction)

n1y = n, at yield in the reinforcement

ng, = The -force in the reinforcement per unit length
(in the longitudinal direction)

nSy = nq at yield in the reinforcement

n, = The compression force in the concrete per unit
length (in the direction perpendicular to the
compression)

n = The shear force per unit length of the rectangle
formed by the corner bars

n, = Normal force in the x-direction (per unit length)

ny = Normal force in the y-direction (per unit length)

O, = The compression strength of the concrete

o, = The split tensile strength of the concrete

o = The pressure per square unit just below the corner
bars

Op = The yield stress in the longitudinal reinforcement

Opp = The yield stress in the stlrrup reinforcement

Ve = Efficiency factor for concrete compression strength

Ve = Efficiency factor for tensile strength in the concrete

a _ The side length of the rectangle formed by the longitudinal
reinforcement

d = The diameter of the longitudinal reinforcing bar located

: at the corner of the cross section

s = Spacing of hoops

$ = Angle of diagonal compression

@ = Angle of friction

8 = Half the épex of the wedge just below the corner bars
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Summary

This thesis is not intended as a study of the literature on
torsion in concrete structures. Lennart Elfgren and Inge
Karlsson [1] published such a study in December 1969, and the
American Concrete Institute is preparing a "bibliography on

torsion".

I have therefore refrained from such a study, and my thesis con-
tains at any rate partially original work except for section 2.
This section describes the theory developped by Denis Mitchell
and Michael P. Collins 2 : "The diagonal compression field
theory", which deals with both normally reinforced and over-re-
inforced concrete beams subjected to pure torsion. The section
in 'question has been included partly on account of the time of
publication (later than 1969, viz. March 1974) and partly on
account of the merit of the theory.

Section 3 contains a report on observations made regarding the
mode of rupture of over-reinforced beams during a test series

with concrete beams subjected to torsion performed at the
Department of Structural Engineering of the Technical University

6f Denmark.

In section 4 I have made an attempt to find a method of calcula-
ting the carrying capacity of over-reinforced concrete beams.
The method of analysis described is in accordance with the ob-
servations made during the test series reportéd in section 3.

Section 5.contains a comparison between tests and the theory
established and section 6 contains conclusions.



Summary in Danish (Dansk Resumé&)

Denne afhandling er ikke ment som en gennemgang af litteraturen
omhandlende vridning i betonkonstruktioner. En sidan er foreta-
get af Lennart Elfgren og Inge Karlsson i december 1969 [1], og
American Concrete Institute forbereder udsendelsen af en "bibli-
graphy on torsion”.

Jeg har derfor afstdet fra en sidan gennemgang,og afhandlingen
indeholder af ikke - i hvert fald delvis - originalt arbejde kun
afsnit 2. Dette afsnit beskriver den af Denis Mitchell oé Michael
P. Colling [2] udviklede teori "The Diagonal Compression Fiels
Theory", der omhandler'sével normalt armerede som overarmerede
betonbjalker pavirket til ren vridning. Dette afsnit er medta-
get dels pd grund af publiceringstidspunktet (senere end 1969 -
nemlig marts 1974), dels pa grund af teoriens lgdighed. ‘

Afsnit 3 er en redeggrelse for iagttagelser vedrgrende brudmiden
for overarmerede bjazlker foretaget under en forsggsserie med
vridningspavirkede betonbjzlker udfgrt pd Afdelingen for Barende
‘Konstruktioner, Danmarks tekniske Hgjskole, .

I afsnit 4 ggres et forsgg pd at finde en beregningsmide for bzre-
evnen af overarmerede betonbjazlker ~ en beregningsmide, der er i
overensstemmelse med iagttagelserne gjort under forsggsserien om-
talt i afsnit 3.

Sammenligning~mellem forsgg og den opstillede teori er foretaget
i afsnit 5, medens afsnit 6 indeholder konklusioner.
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1. Introduction

When studying the literature on reinforced concrete structures
subjected to torsion, one is struck by the disproportion be-
tween the large number of research workers who concern them-
selves, or have concerned themselves, with normally reinforced
structures, and the very small number who have paid attention
to over-reinforced structures.

This can be defended in the case of. structures subjected to pure
torsion since here, in practice, it is enough to interest one-
self in an ubpe; limit for the quantity of reinforcement and
consequently unnecessary to concern oneself with how the concrete
resists the load.

For most of the structures in practice, the governing load is,
however, a combination of two or more of the following moments

and forces:

Bending moment
Torsional moment
Shear force
Normal force

In this case, in ordér to be able to combine the. effects in the
concrete, it is essential to know how each of the effects is re-
sisted since it would otherwise be difficult to get an idea of
how the combined effect is resisted (although this ‘is not to say
that one can use the superposition principle).

I have therefore carried out this work with a view to contributing
to our understanding of how the load pure torsion is resisted

in the concrete, and the case - combined effects - is only touched
upon here and there in order to demonstrate the aim of the pro-
ject.

Of studies that can be used as a basis for mapping the develop-
ment of stresses in concrete structures exposed to combined effects,
I will discuss that of Denis Mitchell and Michael P. Collins [2],
although some of the assumptions made by these authors are at va-
riance with the test material mentioned here [3].



2. Model of Denis Mitchell and Michael P. Collins [2].

The aim of these authors was to arrive at a model which, in sim-
plicity and stringency, lay close to the models used for bending

stresses.

The system of equations established consists of three main ingre-

dients:

1: equilibrium equations
2: geometrical criteria
3: physical relations

re. 1) A lattice analogy consideration is used, with variable

slope of the compression in the concrete.

re. 2} A geometrical relationship is established between strains
in the steel, strains in the concrete and the angle of
torsion of the beam. In addition, a relationship is
established between the angle of torsion and the curva-
ture of the concrete compression bars.

re. 3) For the steel, the stress-strain curves achieved on the
basis of tests are used, while the compressive stress-—
strain curve for the concrete is a parabola, and.its
tensile strength is put at 0.

The resulting system of equations, combined with a number of
assumptions, constitutes a system that is sufficient to allow com-
putation of both stress-strain curve and rupture load for a given
part of a structure. The assumptions include the following:

a) that the concrete lying outside the centroid of the
stirrup reinforcement does not participate in the force
resistance. ’

b) that the concrete pressure in the lattice analogy model
assumes such a direction that the angle of rotation of
the beam for a given torsional moment is minimized.

c) that the concrete fails in compression when the strain in

the outermost concrete layer exceeds 0.3%.



3. Test observations

In the autumn of 1975 and the spring of 1976 a series of tests
on over-reinforced concrete beams subjected to pure torsion
was carried out at the Structural Research Laboratory.

The tests were carried out by John Sander Nielsen and Professor

dr.techn. Troels Brg¢gndum-Nielsen.
The purpose of the tests was as follows:

1: to investigate the effect of the arrangement of the

reinforcement on the carrying capacity

2: to clarify the dependence of the ultimate carrying
capacity on the thickness of the concrete cover

3: to investigate the rupture. pattern for over-reinforced

cross sections.

Tables 1 to 3 show in brief form the most important data from
the tests. For a detailed description of the beams used, the
execution of the tests and the results, see [3].
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3.1 Dependence of carrying capacity on arrangement

of the reinforcement.

A comparison of beams IB2 and IB3 with beams II-0 to II-9
shows clearly that the carrying capacity of the former was
considerably ‘lower than that of the latter even though none

of the beams reached yielding in the reinforcement. The
difference observed must therefore be attributed to differ-
ences in the construction of the reinforcement. The main
difference here is that IB2 and IB3 had axial reinforcement

of 6 mm deformed steel, while II-0 to II-9 had axial reinforce-
ment consisfing of 12 mm deformed steel. It must therefore be
concluded that the design of the arrangement of the reinforce-
ment affects the carrying capacity of over-reinforced concrete
beams subjected to pure torsion.

3.2 Dependence of carrying capacity on depth of'concrete cover,

It was not possible from the tests carried out to demonstrate
any relationship between the ‘depth of the concrete cover and

the rupture load, and as the depths used in the tests must cover
all cases occurring in practice, it can be concluded that the
ultimate carrying capacity of over-reinforced concrete beams
subjected to pure torsion is independent of the depth of the
concrete cover. '

3.3 Rupture pattern

The rupture pattern described in this section is based on ob-
servations taken during the 19 tests described in [ 31 on over-
reinforced concrete beams subjected to torsion and the 12 tor-
sional tests described in [ 4 ] on normally reinforced concrete

‘beams.

At rupture, the interaction between the concrete and the rein-
forcement in over-reinforced beams was found to differ signifi-
cantly from that in normally reinforced beams.



In the over-reinforced beams, the part of the concrete lying
outside the rectangle formed by the axial reinforcement showed
spalling, whereas this was not the case in the normally rein-
forced beams. This spalling must not be confused either with
the spalling that occurs after rupture as consequence of con-
tinued application of angle of rotation or with possible spal-~-
ling of the concrete corners of the cross section. Fig. 1
shows schematically how the spalling occurs, while fig. 2 shows
a cross section of beam II-8, in which the spalling crack can
be clearly seen.

fig. 1.



fig. 2.

In order to throw more light on the problem, we can consider
beams IA3 and IB2 (see table 1). The concrete dimensions and
the arrangement of the reinforcement are the same in the two
beams, but the reinforcement in beam IA3 is Swedish deformed
steel KS42S, while in beam IB2, it is KS60S (see Part II for
detailed information on beams and materials).

Beam IA3 proved to be normally reinforced, while beam IB2 was

over~reinforced.

After rupture, both beams were sawed through, and a clear dif-
ference could be seen in their crack pictures. The above-
mentioned cracking. connecting the longitudinal reinforcing
bars can be seen in fig. 4, whereas there are no signs at all
of it in fig. 3.
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In order to study the phenomenon more closely, strain gauges
were embedded in beam IB3. Fig. 5 shows a photograph of the
embedded gauge in natural size.

fig. 5

The measuring length is 17 mm and the gauge is enveloped in
araldite. )

The gauges were embedded with their measuring direction at
right angles to one side face of the beam and so that their
centrelines were located in the connecting line between the
axial reinforcing bars on the side in question. Their posi-
tions are shown in fig. 6.

| L g L4 [ g
1
2
3
3
A
. L} [} A
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Fig. 7 shows the measurements from gauges 1 and 2. Gauges 3

and 4 showed approximately the same picture.

The stress-strain curve for the beam in gquestion is also shown
in the figure. The same ordinate division is used, while the

abscissa scale is a constant multiplied by the angle of torsion.
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Until cracking occurred, the concrete was, as anticipated,

free of stresses in the direction in gquestion, while from
commencement of cracking and up to rupture, there was an
approximately linear relafiohship between the load increment
and the strain. The ultimate strains achieved were bigger

than is the case for pure tension, but as the stress field
occurring here corresponded to the stress field for the case
"concentrated line load”, this is not surprising. The strains
measured up to rupture are therefore interpreted as elastic de-
formation combined with transverse expansion on account of
micro-cracking (as in ordinary compression testing). It has
unfortunately not been possible to find tests with concentrated
load applications, in which these deformations have been measured.
The heavily increased strains at rupture (which resulted in

the gauges being torn in two) show that the splitting crack
shown in fig. 1 had now formed.
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4. Theoretical treatment

In principle, the theory presented here is a lower-bound
solution based on the theory of plasticity, two of the basic

theorems of which are as follows:
The upper-bound theorem:

If the internal work for the displacement field belonging
to a given mode of rupfure that satisfies the geometrical
boundary conditions is calculated, the load that gives
the same external work will be greater than or equal to

the ultimate carrying capacity.
Lower-bound theorem:

If it is possible to find a stress field which is in
internal equilibrium throughout and which satisfies the
statical and physical criteria, then the appurtenant

load will be smaller than or equal to the ultimate carrying

capacity.



4.1 Lower-bound solution

Let us consider a reinforced concrete beam subjected to pure
torsion. The beam, which is shown in fig. 9, is assumed to
be reinforced with hoops in the longitudinal direction and at

right angles to this.

Tension in longitudinal steel

Inclined diagonal compression

fig. 9.
We make the following assumptions:

a) the concrete is in a plane state of stress and obeys the
square yield criterion (fig. 10) with compressive yield

strength 0, and tensile yield strength 0.

A0,

(-0.,-0.)

fig. 10..
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b) The reinforcing bars are perfectly plastic and are able:
. to resist forces in their axial direction only.

c) The action of the reinforcement in the direction of the
beam axis can be described by an equivalent reinforcement
force ny measured per unit legth of the recténgle described
by the corner bars. At yield n; =n

d)} The action of the reinforcement in the direction perpen-
dicular to the beam axis can be described by an equivalent
reinforcement force n measured per unit length of the beam

axis. At yield, ng = nsy'

To obtain a lower bound for the torsional capacity, we assume
the concrete between the corner bars to be in a state of homo-
genius, uniaxial compression.inclined at the angle to the beam
axis, with the resultant ny measured per unit length in the per-

pendula; direction. At yield, oy, = Dy -

Moment equilibrium about the centre of the cross section requires
(Bredt's formula):

T =/2abn (I)
where a = the biggest side length in the rectangle

described by the corner bars.

b = the smallest side length in the rectangle
described by the corner bars.

n = the shear force per unit length of the

rectangle described by the corner bars.

We then consider the element as shown in fig. 11 (from fig. 9).



- 23 -

7 Neos ®

A 1-cos® A

fig. 11.

Since equilibrium is required, we obtain:

_ 2
n, = -ny +‘nb x cos“®
n =n_ x cosp x sing
where n;; ng = reinforcement forces per unit length

ng = concrete force per unit length.
n_; n_ = normal forces per unit length

n = shear force per unit length.

Turning now to element B (from fig. 9), we obtain analogously
from fig. 12:
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fig. 12.

_ 2
ny = ns + nysin @

Since n and nyare equal to 0 (no normal force and for symmetry
reasons), we obtain the following equations:

n; =0 e cosZQ (TI1)

n_=mn_ - sin2¢ : (II1)
S b

n_=n - sin@ -+ cos® (IV).

From II and III we obtain:

tg® =\/g: (v)

= ng + 323)

Ny s ny
-and from I, II, III and IV, we obtain

T = Qab-Jnl- ng
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As T is an increasing function of n,y and ng, we obtain. the

biggest lower bound for

n =1n

1 and n_ = n__;

1y s sy

T 2abe v n s n
ly sy

with the angle ¢ determined by
tgp = \/Dsy
n
ly

This equation is valid as long as the force per unit length
ny does not exceed the yield force nby' in other words,

My * Psy £ Ppy

For n1y + n > nb

sy Y
there are three possibilities:

1 =
1) for (ns < in. ) A (nl =

y 2 oy Dpy T Bsy < D1yl

i.e., the reinforcement in the longitudinal direction does
not yield, we get: ‘ '

T = 2ab\/nsy(nby - nsy) ‘ : (B)

with the angle @ determined by

tgd = 4/ Dsy
- n

“py sy

. 2) for (nly < %nby) A (I'ls = nby - n <n_),

i.e., the reinforcement in the direction of the stirrups

does not yield, we get:

T = 2ab\/nly(nby - nly) ()
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with the angle @ determined by

tgp =y/Cby.~ "iy
. n
ly
3) for (nly > %nby) A (nsy > %nby)’

we obtain the biggest lower bound for n,= ng = ) n
. . . . s Y
i.e. yielding is not reached in either the-axial

direction or ‘the stirrup direction:

2ab \/%nby . %nby =>

T = abe nby

T

(D)

with the angle ¢ determined by

_4/in -
tgp =\/ZThy =1
1

" *Ppy

The system of equations A - D represents a complete system
of equations for solving the torsional carrying capacity for
all degrees of reinforcement. In addition to nsy and}nly,

the determination of which presents no problems, the unknown
quantities include the quantity Dyt which we attempt to de-

termine in the last part of this section.



4.2 Determination of nby

is
by
independent of the thickness .of the concrete cover, but that

It can be concluded from the test obéervations that n

it depends on the arrangement of the reinforcement used -
and especially the diameter of the axial reinforcing bar lo-

cated at the corner of the cross section.

The tests also showed that the strength parameters of the con-
crete must also be included in the expression fdr'nby, and
"we can therefore expect an expression of the form :

nby=f(d; O‘c;CIt; seesans )
where:
d = the diameter of the longitudinal reinforcing bar

located at the corner of the cross section.

Q
It

the compression strength of the concrete.

o the tensilé strength of the concrete

In order to create equilibrium in a corner element, the. com-
pression in the concrete n must be transmitted to the
reinforcement, and if this force transmission is assumed to
take place uniformly along the axial reinforcing bars located
at the corner, we can draw analogies to the subject:

" concentrated line loads on concrete bodies."

Within this field, there are many studies and empirical expres-
sions, but when applied to this special area, those commonly
used do not give expressions with acceptable functional corro-
lation - and do not give reasonable numerical values either.

For calculating the quantity nby' use is therefore made of an
upper bound solution from the theory of plasticity for the case:
concentrated line load on unreinforced concrete prisms.

The rupture patterns and calculation of the upper bound for this
case have been published by W.F. Chen and D.C. Drucker [5].
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Here, too, an attempt has been made to establish a safe, static-
ally admissible stress field (lower bound solution) on the same
assumptions as used for the upper bound solution. The efforts
were not crowned with success, and we must therefore make do with

the upper bound.

In a lower bound solution (here the solution of the detérmina—
tion of the torsional strength of the beam) it may be dangerous
to incorporate strength parameters determined on the basis of
upper bound solutions for sub-problems.since one is then no longer
sure that oné's result is going to be on the safe side of the
actual ultimate load, even when the assumptions are satisfied.
HoweVer, the rupture pattern used for determination of nby is

in accordance with the observed pattern, and the upper bound so-
lution can also be expected to be close to the right solution.
For this reason we will continue to regard the expression for de-
termination of the torsional moment of the beam as a true lower

bound.
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4.2.1 Plastic determination of nby

The following assumptions are made:
a) It is assumed that there is a plane deformation field.

b) The concrete is regarded as a stiff, plastic material,
the yield criterion of which follows Coulomb's modified
rupture hypothesis.

c) Rupture is assumed to take the form of split rupture

with the rupture pattern shown in fig. 13.

<Ll Q- |
|
|
|

\)

2H

Y
|
|
|
|
]
IA\

L]0
e

fig. 13

d) The rupture value corresponding to the rupture pattern
shown in fig. 13 is assumed to be the same as for the
rupture pattern in fig. 14.
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fig. 14.
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re b) The actual material properties of the concrete lie far
from those assumed here - especially as regards the con-
crete's tensile properties. This is a trivial problem in
all applications of the theory of plasticity to concrete,
and here (as, for example, in [6] or [8]), we compensate for these
deficiencies by assuming that both the tensile strength .
and the compression strength are a product of an effectivity
factor and the measured material strength.

The size of these effectivity factors is determined (for
lack of a better method) on the basis of the test results.

It is obvious, in advance, that both these factors must
lie between zero and unity, and it must be assumed that
the effectivity factor for compression Ve is considerably
bigger than that for tension V- If we assume vy o= 0,

we get the stress in the loading face < 9. which is
clearly at variance with tests with concentrated loads.
We must therefore assume that 0 < Vi < ch 1.

However, the expressions in the following have been derived
on the assumption that the measured.uniaxial values can be
used for the tensile strength and the compression strength,
and the effectivity factors are first introduced in the
section on comparison with tests.

re c¢) Only this rupture pattern is investigated since it is in
accordance with the observed pattern. This is warranted
because other possible rupture patterns with'a rupture load
are not applicable owing, for example, to bigger appurtenant
effectivity factors. i

The assumed rupture pattern presupposes a horizontal dis-
placement of the loading face in relation to the two parts

of the concrete. Such displacement can easily be established
on the section between two hoops. At one hoop, the matter
becomes more problematical,}and (even though the practical
design of a corner detail helps us, see fig. 15) we probably
have to- assume that the rupture pattern is locally as in-
dicated in flg. 16.
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g. 15

N
N

s/
/

A

fig. 16

possible half
space for an
infinitessimal
movement of the

axial reinforcement

T rupture line
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As this rupture pattern is difficult to handle purely
arithmetically and as it must be assﬁmed only to accur
locally, we have chosen to regard the rupture pattern
shown in fig. 14 as valid throughout.

4.2.1.1 Description of rupture pattern

The wedge that is formed directly under the concentrated load
moves downwards, and the remaining two parts of the prism move
out to the sides. We thereby get sliding failure along the
sides of the wedge and separation failure along the vertical
split. If we assume that the apex of the wedge is 2+B8 and
that the relevant movement V along the sides of the wedge form
the angle ¢ (= the angle of friction) with this, we get the
relationship shown in fig. 17 between the movements.

EERREREER

In this figure, Vyis the vertical movement of the wedge, and
2~V2is the total horizontal movement in the vertical disconti-
nuity line. By means of the assumed yield surface for the
concrete and the displacement field sketched here, we can cal-
culate both the internal and the external work required for the
displacement, and the resulting value of the concentrated pres-
sure is minimized with regard to the angle g (for futher explana-

tion, see [5]).
External work:

Ay=of-d-V-COS(B+cp)



- 33 =

Internal work:

By = 0 (H - § cotB)» 2-Vesin(8 + @) + —sin g .
From Ay = Ai' we get
. . 2H .
5(1 - sinp)o_ + sin(B + w)(TT sinB - cosB)ct
O'f = ¢

sinB cos(B + )

which has its minimum value for:

' 1 (2H/4) cosy
cotB tgy + 1 + ——
cos¢ \J (Uc/gt)(l__§§&£9 - sing

il

Inserted in the expression for cf, this gives:

Og = c:t(%lIi tg (28 + @) - 1)

The quantity H is determined here as shown in fig. 18.

N\

o

fig. 18.
b = 2H sing =>
=b_1
2 sin® !

which, inserted in the expression for d- Og gives:

nby =d » ct(g Egigﬁ_i_gl - 1)

sing
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where
b = smallest side length in the rectangle described by the
axial reinforcement
d = the diameter of an axial reinforcing bar at a corner of
a cross section
@ = the angle between the longitudinal axis of the beam and
the direction of the compression in the concrete
@ = the ‘ahgle of friction of the concrete = 37O
B = determined from the following expression:
b cosy
- 1 d sing
cotB = _—
8 tgcp+cos(‘0 1+cr .
c 1 = sing .
o ! 3 - sing
t
where:
Oy = the cylinder compression strength of the concrete

oy the split tensile strength of the concrete.



5. Comparison with tests

As in every other application of the theory of plasticity to
concrete structures, the analysis is only useful if it produces
a result that is in reasonable accordance with the experimental
results, and the theory from the foregoing-pages will therefore
now be compared with test results.

Two test series have been chosen for the comparison: one performed
by John Sander Nielsen and Troels Brgndum Nielsen (mentioned in
section 3 and described in greater detail in [31) and one per-
formed by Paul Lampert and Bruno Thiirliman at Institut flir Bau-
statik ETH Ziirich [7]. The main data from the former series are
given in tables 1, 2 and 3, and the main data from the latter in
table 4.
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The beams in which yielding of the reinforcement was not
ascertained were used for determining the efficiency factors
mentioned on page 54. The determination was performed on
a computer by calculating nby for all combinations of v, and

t

Vc , and comparing the results with n, .

Assuming the concrete compression force (per unit of length)
corresponding to the observed ultimate strength to be an ex-
pression of a normally distributed function with a specific
mean value and standard deviation, where the mean value is a
function of Vo and vt,f(vc, vt), we obtain (by means of the
maximum likelihood principle) the best determination of Ve
and Ve by minimizing the expression

a :
L (rpg = £5000 19 = Qv V)
i=1

where n = the number of tests
f(vt,vc) = d -cf(vt,vc)

Owing partly to the limited number of test beams, the efficiency
factors have only been determined to one decimal point, and the
factors given below must therefore be regarded only as a guide:

Y 0.6

(]

0.3

[

Yt
Inserting these values for the efficiency factors in the ex-
pressions for Ogr We obtain the following anticipated values
°fvnby compared with the observed values:
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Beam No. b tests nby' theory
MPa MPa

182 L17 4,58
1B3 s, 81 b6k
110 5,55 5,53
11 5,57 5,76
112 6,27 6,27
I 4* 5,66 5,51
Is* 6,09 5.92
1e* 5,98 6,40
118 5,26 5,3k
To 11,41 1,57

TABLE 5
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As a measure of the degree of over-reinforcement, we use here
the quantity:

fya * nza
nby
Vex )
Fig. 19 shows —v—‘E——— as a function of this parameter, where
theory

Dga * Bya

a =1 gives the upper bound for normally reinforced

by

cross sections.

¢ is put atv37°.
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6. Conclusions and discussion

Accordance between the calculated and the observed values of

the ultimate strength must be said to be satisfactory, and the
numerical values of the efficiency factors lie within the anti-
cipated interval. As the comparative material represents a
reasonable interval for the parameters taken into account

(<%, Oy b, d), the system of equations on page 24 to 27, com-
bined with the determination of nb on page 33, must be said to
constitute a complete system for analysing the torsional carrying

capacity of reinforced concrete beams.

A variation of the angle ¢ would have been. desirable, but it
was impossible to find test results that satisfactorily illuminated
the effect of this quantity.

Two questions now arise:

1: the accordance between the
presented here and that proposed in DS411 [9].

2: the combination of a torsional and a bending moment.

re 1) If we introduce the following in the expression for
Ny (from page 33)

¥ = 0.6

c
vt = 0.3
¢ = 45°
_ 1
9% =76 %

and convert nby into an equivalent stress in a hollow
cross section with the wall thickness t = % (as de-
scribed in DS411), we obtain, by assuming d = 7 b

0b(max) = 0.4 %

’

and we thus see that there is complete accordance for

the assumptions made here.
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All the assumptions made (apart from d =§% b) appear reasonable.
The assumption that d = %Zb is also in reasonable accordance
with the basic test material for the code, although it seems

to be unreasonable in the case of big structures. It must

therefore be presumed that the directions given in the code will

result in structures whose carrying capacity is on the unsafe

side unless it is ensured that the longitudinal reinforcement

at the corner of the cross section satisfies the criterion

d 2 2 24b, or the relnforcement is arranged in such a way as to

give an equally good possibility of force transmission.

re 2) Heré, only the case in which it is the concrete that
sets an upper bound for the carrying capacity will be
considered. This case is . of great practical importance
to designers on account of the interaction between the
" compression stresses in the concrete from bending and

torsion.

We will therefore try to find a reasonable interaction
diagram for the concrete compression.stresses produced
by these two forces.

DS411 (guide) proposes the diagram.shown in fig. 20,
while "CEB Model €ode" [10] mainly recommends the diagram
shown by the broken line in fig. 20.
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Whereas DS411 must presumed to be too congervative, it seems
unreasonable, in the CEB Model Code, to allow loading with a
bending moment as shown by the vertical line for = 0.4 - O or

even when the concrete has been fully utilized for torsion.

The theory for the treatment of pure torsion will therefore be
extended here in order to construct an interaction diagram for
the compression stresses in the compression zone of the concrete
(from bending).

We assume the same mode of rupture. and must therefore be able

to use the expression for nby. The expressions for determination

of ¢ no longer apply, however, although this can still be determined
as the angle between the longitudinal axis of the beam and the
direction of the resultant of the compression in the concrete

{(in the compression zone). With similar assumptions as in point

1, viz.
vc'= 0.6
Ve = 0.3
_1
% = 10 %
d =——1...

N
W]

and converting nby into an equivalent stress in a hollow cross
section with the wall thickness t = %-b, we obtain the following

formula by insertion in the eguations on pages 33 and 34 :

o
= eq .. . b tg(28 + 377) _

YI: nby e aby d ) 0.3 Oc(d Sind 1)
where B 1is determined by
II: cotB = tg 37°+—-—-—1——o-

cos 37

24 COS 37°
- 1+ sin®
0.6 « O . [?)
, 3 c ( 1 - sin 37" _ .5, 379
0.3 « == + 0O

10 c
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equal to a code factor (fn) nmultiplied by O, We

by
obtain, by insertion and calculation of I and II:

Putting o

1 = - 1 . . .
I: fn 9, gb = d 10 0.3 oc
b (tg 28 + 37% _
d sing
_ . (tg(28 + 379 1
fn 0.15 L sin® EZ]

II: cotB = 0.75 + 1.25 « V1 + 2287
) sin®
_The total interaction diagram is obtained by plotting fn vecto-
rially, in a V-M diagram with axes at 450, as the length
of a vector with the slope %.

The angle @ is determined as the angie of the compression resultant
(in the compression flange) with the axis of the beam. We then

let ¢ run through the interval from 0 to 45° and obtain the

desired curve by insertion in I and II and by using the self-

evident criterion that the compression resultant is always smaller
than Oy - Dissolved in a normal M-V diagram, we obtainvthe following
curve and table:
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fig. 21.



a. [0
? 8 fn fa " E% fn ' 3%
45 12.51 0.393 0.393 0
40 12.09 0.418 ‘0.380 0.051 ‘
35 11.59 0.450 0.365 0.111
30 11.01 0.493 0.349 0.181
25 10.63 0.567 0.339 - 0.275
20 9.48 0.643 0.311 0.384
15 8.45 0.788 0.289 0.557
10 8.00 1.140 0.280 0.925
5 5.24 1.870 0.230 1.700
- 0 — 0 > 00 - 0 -5
TABLE 5.

An acceptable approximation to the curve in fig. 21 can‘be obtained
by a bilinear relationship. This has been suggested to the Danish
Concrete Code Committee for incorporation in the revised edition of
the Danish Code for Concrete Structures.
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