Department of Structural Engineering Danmarks Tekniske Hojskole - Technical University of Denmark

NY TEORI TIL BESTEMMELSE AF REVNEAFSTANDE OG REVNEVIDDER

I

BETONKONSTRUKTIONER

DAVID HOLKMANN OLSEN

M. P. NIELSEN

A3
Afdelingen for Bærende Konstruktioner
Department of Structural Engineering
Danmarks Tekniske Hajiskole
Bygning 118 DK-2800 Lyngby

NY TEORI TIL BESTEMMELSE AF REVNEAFSTANDE OG REVNEVIDDER I BETONKONSTRUKTIONER

DAVID HOLKMANN OLSEN
M. P. NIELSEN

Ny Teori til Bestemmelse af Revneafstande og Revnevidder i Betonkonstruktioner
Copyright (C) by David Holkmann Olsen \& M.P. Nielsen, 1990
Tryk:
Afdelingen for Bærende Konstruktioner
Danmarks Tekniske Højskole
Lyngby
ISBN 87-7740-030-5

RORORL

Det i denne rapport beskrevne arbejde er udfort ved Afdelingen for Barende Konstruktioner, Danmarks tekniske Højskole.

Arbejdet er primært baseret pa et eksamensprojekt udført ved ABK i foraret 1988 af Stud. Lic. David Holkmann Olsen med Professor, Dr. Techn. M. P. Nielsen som vejleder.

RESURE

Med udgangspunkt i de revneforhold der optræder i armeret beton udvikles dex en generel teori til bestemmelse af revneudviklingen bade i det tidlige og i det fuldt udviklede revnestadium.

Med det tidlige revnestadium menes det stadium, hvor armeret beton bliver udsat for smá tøjninger, f.eks. som følge af svind, krybning eller temperatur påvirkninger (S.K.T.påvirkninger).

De teoretiske overvejelser resulterer i et sæt formler til beregning af middelrevneafstanden og middelrevnevidden som funktion af enten spændingerne eller tojningerne. Formlerne er gyldige for betonkonstruktioner udsat for enakset træk og bøjning. Endvidere er der foretaget en statistisk undersøgelse af revnefordelingen med henblik pa bestemmelse af den maksimale revnevidde.

Resultaterne af teoriens beregninger pa et stort antal forsøgsbjælker fra litteraturen viser en god overensstemmelse med de aktuelle forsøgsvardier.

sumary

A theory of cracking of reinforced concrete is developed to discribe the crack development from the very early stage to the fully developed stage.

Cracking of reinforced concrete in the early stage is usu* ally caused by shrinkage, creep or temperature loading.

A set of formulas to calculate the mean crack spacing and the mean crack width are presented as a function of either the stress or the strain. The formulas are valid for rem inforced concrete beams subjected to uniaxial tension and bending. Futhermore, a statistical investigation is carried out concerning crack distribution in order to determine the maximum crack width.

The theoretical predictions of the mean crack width is compared with a great number of eksperimental results from the literature, and a good agreement is obtained.

SYMBOMCTETER。

a	Transmissionsrevneafstand.
a_{t}	Transmissionsrevneafstand ved enakset trak.
$a_{\text {tb }}$	Transmissionsrevneafstand for enaksede bojningsrevner.
a_{bb}	Transmissionsrevneafstand for bøjningsrevmer.
A	Areal.
A_{C}	Areal af beton.
${ }^{A_{c t}}$	Areal af beton i trakzonen.
${ }^{\text {Acte }}$	Effektivt areal af betonen i trokzonen.
${ }^{\text {A }}$	Areal af armering.
$A_{\text {te }}$	Det totale effektive areal af betontværsnittet.
A_{τ}	Forskydningsareal.
b	Bredde af bjælke eller trækstang.
B	Se formel (6.99).
c	Dæklagstykkelse.
C_{1}	Se bemærkningerne efter formel (5.10).
C	Trykresultant.
d	Diameter af amering.
D	Dissipation.
E_{C}	Betonens elasticitetsmodul.
$\mathrm{E}_{\mathbf{S}}$	Armeringens elasticitetsmodul.
$\underline{1}$	Fraktilværdi.
f_{CC}	Betonens trykstyrke.
$\mathrm{f}_{\mathrm{ccp}}$	Betonens plastiske trykstyrke.
f_{ct}	Betonens trakstyrke.
${ }^{\text {f }}$ ctb	Betonens bojningstrokstyrke.
$\mathrm{f}_{\mathrm{ctp}}$	Betonens plastiske trakstyrke.
\hat{E}_{y}	Axmeringens rlydesprnding.
f_{Yk}	Armeringens karakteristiske flydespænding.

$I_{\text {tyr }}$ Inertimoment for det revnede tværsnit.
h
h_{e}
h_{i}
$h_{u n}$
$I_{\text {tyu }}$
k_{w}

1
$1_{b b}$
1 obb
${ }^{1}$ otb
1_{t}
$1_{\text {tb }}$
1_{tm}
${ }^{1}$ o
L
$\Delta \mathrm{L}$

M
n
N

0
p
r
R
s
t
T

Højde af bjælke.
Afstand fra overkant af bjælke til tyngdepunkt af armeringen, (effektiv højde eller nyttehojde).
i. Den momentpávirkede bjalkes indre momentarm.
un Afstand fra nullinie til underkant af bjxlke.

Inertimoment for det urevnede tværsnit.

Se fommel (6.131).

Revneafstand.
Revneafstand for bojningsrevner.
Sliplængden for bøjningsrevner.
Sliplængden for enaksede bøjningsrevner.
Revneafstand for enakset træk.
Revneafstand for enaksede bøjningsrevner.
Middelrevneafstand for enakset trak. Sliplængden.
Længde af bjælke eller trækstang.
Længdeændring af bjælke eller trækstang.

Moment.

Forholdet E_{S} / E_{C}.
Nomalkraft.

Overfladeareal af armering.

Kraft.

Parameter i brudfigur, se fig. 6.3.14.
Reaktion.

Koordinatakse。

Afstand mellem armeringsjern.
Trækresultant.
u Relativ flytning ved brud.
u_{t}

W
$x_{0} \quad$ Overforingslangden for forskydningsspandingen.
${ }^{2}$ ir Afstand fra mullinie til tyngdepunkt af armeringen i det revnede stadium.

Afstand fra nullinie til tyngdepunkt af armeringen i. det urevnede stadium.

Faktor der beskriver revnedannelsen i det tidlige revnestadium (se figur 6.5.3).

Vinkel mellem flytning og brudfladen.

Revneparameteren ved enakset træk (se formel (5.2)).

Tøjning。
Tøjning i beton.
Mræktøjning i betonen.
Middeltojning i betonlegemet.
Tojning i armeringen.
Middeltøjningen i armexingen under hensyntagen til betonens trokstivhed.

Tøjning i armering ved overgang fra revnefase I til revnefase $I I$.

Tojning i armering ved overgang fra revnefase il til revnerase III.

φ φ_{b} φ_{1}	Geometrisk armeringsforhold under hensyntagen til det effektive areal $A_{c t e}$. Geometrisk armeringsforhold ved bojning under hensyntagen til det effektive areal $\mathrm{A}_{\text {cte }}$. Friktionsvinkel.
η_{1}	Se formel (5.20).
η_{2}	se formel (5.21).
λ	Effektivitetsfaktor for forskydningspændingen mel lem beton og armering.
λ_{1}	Se formel (5.5)
λ_{2}	Se afsnit 5.2.3.
μ	Hældningen af arbejslinien (se figur 6.5.3).
ν_{b}	Effektivitetsfaktor ved bojning.
${ }^{\nu}$	Effektivitetsfaktor ved tryk.
ν_{t}	Effektivitetsfaktor ved træk.
ρ	Geometrisk armeringsforhold.
σ	Spanding.
σ_{0}	Spænding i beton.
$\sigma_{c t}$	Trakspmnding i beton.
$\sigma_{\text {s }}$	Spænding i armeringen, normalt armeringsspændingen i en revne.
$\sigma_{\mathrm{s}}^{\mathrm{m}}$	Spandingen i armeringen i midten af betonlegemet.
$\Delta \sigma_{s}$	Spandingsspringet i armeringen ved dannelsen af en revne.
σ_{sm}	Middelspændingen i armeringen under hensyntagen til betonens trækstivhed.
$\sigma_{\text {sr }}$	Spandingen i axmeringen ved dannelsen af en revne.

```
\tau Forskydningsspanding.
Tc Forskydningssprnding i betonen.
\taucm Middelvardien af forskydningsspænding i betonen.
T}\mathrm{ cmax Maksimalværdien af forskydningsspænding i betonen,
    (se figur 6.3.10).
\xi Fordelingskonstant.
```


NEDRE TNDEX

Folgende generelle nedre indexer er anvendt i rapporten.
f\% Fraktilvardi som overskrides if f af udfaldene. m Middelværdi.
max Maksimalværdi.
min Minimalværdi.
r Revnet stadium.
u Urevnet stadium.
(x, y, z) Retvinklet koordinatsystem , hvor x - aksen er parallel med bjelkens lxngdeakse og beliggende i tvarsnittests tyngdepunkt.

KDHOTMS FORTEGNELSE

side

TNDTEDNTNG 1
FYSTSKE REVNEFORHOLD ORYRTRG REMERUNGSSTRNGER 4
4.1 Indledming 4
4.2 Defimition af rewnew 4
4.2.1 Beskrivelse af forsøg 4
4.2.2 Beskrivelse af primære revner 5
4.2.3 Beskrivelse af indre revner 9
4.2.4 Beskrivelse af sekundære revner 13
4.2.5 Beskrivelse af langsgàende revnex 14
GKSISITERENDE RRVAETPORTER POR ENAKSETT SPENDINGSTTLSTAND 16
5.I Indledming 16
5.2 Former for den primare revmeafstand 16
5.2.1 Formel 1 : Essen \& Krenchel 16
5.2.2 Formel 2: CEB 17
5.2.3 Formel.3: Leonhardt 18
5.2 .4 Formel 4 : Beeby 19
5.3 Pomaler for den primare revnevidde 20
5.3.1 Formel 1 : Efsen \& Krenchel 20
5.3.2 Formel 2:CEB 22
5.3.3 Formel 3: Leonhardt 23
5.3 .4 Formel 4 : Beeby 24
6.1 Indledning 26
6. 2 Oremet stadium 26
6.3 Revnet stadim 30
6.3.1 Beskrivelse af revnedannelsen 30
6.3.2 Beskrivelse af arbejdslinien for det revnede legeme 33
6.3.2.1 Sammenfatning 41
6.3.3 Den begyndende revnefase 41
6.3.3.1 Bestemmelse af transmissions - revneafstanden a_{t} for $l \geq 2 \cdot x_{0}$ 44
6.3.3.2 Grænseværdiundersøgelse I 46
6.3.3.3 Bestemmelse af overføringslængden x_{0} 46
6.3.4 Den udviklende revnefase 51
6.3.4.1 Bestemmelse af transmissionsrev- neafstanden a_{t} for $x_{0} \leq 1 \leq 2 \cdot x_{0}$ 54
6.3.4.2 Grænsevardiundersøgelse II 55
6.3.4.3 Grænseværdiundersøgelse III 56
6.3.4.4 Grænseværdiundersøgelse IV 57
6.3.5 Den stabiliserede revnefase 58
6.3.5.1 Bestemmelse af transmissions - revneafstanden a_{t} for $a_{t}=x_{0}$ 59
6.3.5.2 Grænseværdiundersøgelse V 59
6.3.6 Slip teorier 60
6.3.6.1 Indledning 60
6.3.6.2 Leonhardts udtryk 63
6.3.6.3 Jokelas udtryk 63
6.3.6.4 Plasticitetsteoretisk udledelse 63
side
G. 1 Revmeafstard og Rewnevidde 70
6.4 .1 Revneafstanden $I_{t m}\left(\epsilon_{\mathrm{mm}}\right)$ 70
6.4 .2 Revnevidden $\mathrm{w}_{\mathrm{tm}}\left(\epsilon_{\mathrm{sm}}\right)$ 71
6.4.3 Revneafstand og revnevidde for revnefase I 73
6.4.4 Revneafstand og revnevidde for revnefase II 74
6.4.5 Revneafstand og revnevidde for revnefase ITI 75
6.5 Teorien verificeret ved hialp af forsga 77
6.5.1 Forsog fra reference [76.1] 77
6.5.2 Vurdering 82
6.5.3 Fors \varnothing fra reference [72.1] 87
6.5.4 Vurdering 90
6.6 statistish fordelinc af revmearstamden oq reynevidden 95
6.7 Sammeni icming ged exsisterende ceoriex for enaluset trak 100
 103
REVNETEORT FOR REM BQINTMG 105
8.1 Indledmime 105
S.2 Urevnet stadipu 105
Q.3 Rewnet stadioum 106
8.3.1 Indledning 106
8.3.2 Trakrevner 106
8.3.2.1 Revneafstand og revnevidde for revnefase I 111
8.3.2.2 Revneatstand og revnevidde for revnefase IT 112
8.3.2.3 Revneafstand og revnevidde for revnefase III 113
8.3.3 Bøjningstevner 114
8.3.3.1 Revneafstand og revnevidde for revnefase I 116
8.3.3.2 Revneafstand og revnevidde for revnefase II 117
8.3.3.3 Revneafstand og revnevidde for revnefase III 117
8.3.4 Teorien verificeret ved hjælp af forsøg 119
8.3.4.1 Forsøg fra reference [63.1] 119
8.3.4.2 Vurdering 123
8.3.4.3 Forsøg fra reference [66.1] 127
8.3.4.4 Vurdering 130
9 KONKLUSTON AF REVNETPEORTEN TOR REN BQUNING 133
10 SAMTETE KONRTUSTOM 134
11 FORMELOVRRSSGT 135
11. 1 Arbejdslinien for det revnede legeme 135
11.2 Revmeafstand of Levnevidde for enakset trek 136
11.3 Revneafstand og revnevidde for ren bojning 338
11.3.1 Revneafstand og revnevidde for enaksede bojningsrevnex 138
11.3.2 Revneafstand og revnevidde for bojningsrevner 139
12 ITTERATORTTSTE 141

Storrelsen af revner i betonkonstruktioner onskes oftest begrwnset. Hertil kan være mange grunde.

En gennemrevnet beton kan have storkt reduceret holdbarhed, idet betonens karbonatisering kan ske vasentligt hur tigere efter revnedannelse og betonen bliver ogsa lettere gennemtrængelig for klorider. Herved vil armeringskorrosion kunne initieres hurtigere og vil kunne ske med storre intensicet.

Det ex almindeligt at begranse maksimalvardier af revnevidderne til af storrelsesordenen 0,1 til $0,4 \mathrm{~mm}$ afhængigt af armeringens korrosionsfolsomhed, omgivelsernes aggressivitet O.s.v.

Hvis en betonkonstruktion skal være vandtæt, må revnevidden ligeledes begronses. Det er almindelig praksis at be grænse middelrevnevidden til omkxing $0,1 \mathrm{~mm}$, hvis en slapt armeret konstruktion skal være vandtæt. Der kan naturligvis vare tale on trethed over for andre vasker og ogsa overfor gasser. Endelig vil de fleste bygherrer også kræve revner begronset alene af astetiske årsager.

Revner bliver synlige for det blotte oje allerede ved revnevidder pá 0,1 til $0,2 \mathrm{~mm}$ afhængig af betronoverfladen。 På en hvid glat overflade kan man se revner pa ca. $0,1 \mathrm{~mm}$. En revnevidde på eksempelvis $0,3 \mathrm{~mm}$ vil på en sådan overflade virke skæmmende for udseendet. Det er derfor overordent ligt vigtigt at kunne beregne revnevidder i en betonkon struktion.

Denne rapport handlex om beregning af revnevidder fremkaldt af ydre pavirkninger i form af kræfter, temperatur og svindtøjninger. Disse revner kaldes i reglen "statiske revner".

Revner fremkaldt af "betonsygdomme", såsom alkalikiselreaktioner, eller af frostangreb og fra temperaturtojninger fra betonens hærdevarme behandles ikke.

Der findes allerede publiceret en hel del arbejder vedr. statiske revner. Vardien af disse er begrænset af flere arsager:

1) Formlerne er helt eller næsten helt empiriske. Der er altsa ikke knyttet nogen eller kun meget lidt teoridannelse til dem.
2) Formlerne gælder i reglen kun i det såkaldte fuldt uda viklede revnestadium, d.v.s. i det stadium, hvor antallet af revner omtrent har nået sin maksimale værdi. D.V.S. formlerne galder ikke for sma tøjninger, som der næsten altid er tale om, når påvirkningerne stammer fra temperaturændringer og svind.

Det fuldt udviklede revnestadium nas ved armeringsspændinger på omkring 200-300 MPa, d.v.s. ved armeringst $\varnothing \mathrm{m}^{-}$ ninger pa omkring $1=1,5 \% / 00$. Da betonens trakbrudtojning er af storrelsesordenen $0,1-0,2^{\circ} / 00$ vil det sige, at formlerne ikke dækker et ret sa stort tøjningsomráde. Typiske værdier for temperaturtøjninger vil også være væsentig mindre end $1-1,5^{\circ} / 00$. Foeks. vil en temperaturændring på 40° give en tojningsændring pà ca. 0,4 \%/00, hvilket ogsa vil være en typisk maksimalværdi af betonens svindtøjning.
3) Formlerne behandlex i reglen kun enaksede tilfælde.

I denne rapport presenteres en teori, der grldex bade for små og store tøjninger, d.v.s. den indeholder det område, de kendte formler behandler, som et specialtilfælde.

En teori, der også gælder for små tøjninger vil lette bestemmelsen af den nødvendige armering til begrænsning af svind- og temperaturfremkaldte revner, et problem hvis losning indtil nu altid har voldt kvaler, og hvor den ilagte armering ofte har varet alt for lille og uhensigtsmassigt udformet.
V.h.a. denne teori er det også på en simpel måde muligt at beregne den stivhedsforøgelse i en revnet konstruktion, som den urevnede beton mellem revnerne giver anledning til (tension stiffening).

Vedr. fleraksede tilfalde henvises til en anden rapport i ABK's rapportserie, se [83.2].
4.1 rad eoning.

For at kunne forudsige revnedannelser og opstille teoretiske modeller for revneafstande og revnevidder, máman have kendskab til de forhold, der gør sig gældende ved revnernes damelse og man má også have kendskab til, hvile ke Eorskellige revner, der opstar i en armeret beconkonstruktion.

I det folgende afsnit vil den overordnede revneterminologi blive beskrevet i forbindelse med forsog, der fortrinsvis blev udfort af Y. Goto [71.1] til belysning af de fysiske revneforhold omkring armeringen.

4.2 Detinition af revmex

4.2.1 Beskrivelse ar forspg.

Ved anvendelse af forkammet armering i betonkonstruktioner forekommer der ved belastning af konstruktionen et revnew billede omkring ammeringen, der er meget forskelligt fra de revneforhold, der optræder ved anvendelsen af glat axmering.

Forsøg til beskrivelse af de forskellige revnetyper ome kring forkammede armeringsstænger ex primært udført af Y. Goto [71.1]. Goto anvendte i sine forspg et traklegeme, der ses afbildet på nedenstående figur 4.2.1.

Figur 4.2.1: Goto's forsøgsprismer.

Til belysning af revneudviklingen blev der foretaget málinger pà en armeringsstang forsynet med ribber og indstobt i et betonprisme. De herved fremkomne armerede betonprismer blev belastet med en aksial trækkraft N.

Der blev i dette betontraklegeme parallelt med armerings stangen indstobt smá ror, der med en vis afstand var gennemhullede, saledes at der kunne trange blak ud af disse hullex under forsogets gang og saledes afslore de revne dannelser, der opstod under forspget.

Ved belastning af de armerede betonlegemer udvikler der sig efter nogen tid to forskellige typer as revnex. Den ene type revne ex synlig pa betonoverfladen, mens den anden type ikke slar helt igennem til betonoverfladen.

Den forste type af revnex vil blive kaldt primare revner. mens den anden type vil blive karakteriseret som indre revmer.

4.2.2 Deskrivelse af pripare revney.

Den aksiale trakkraft N, der pafores det armerede betonlegeme, afleveres gennem ammexingsstrongeme til den omkringm liggende beton.

Denne kraftoverforing sker dels ved adhasion mellem arme-
ring og beton og dels af en overførelse vhja. cryk pa kammene.

Idet belastningen oges vil der i det ojeblik betonens trokstyxke overskrides dannes revner, der går gennem hele betontværsnittets trakzone og er vinkelret på axmeringen. Disse revner kaldes adskillelsesrevner eller primare revner.
på nedenstående figur ses en skitse af de primære revner, der dannes i et betonlegeme, der bliver belastet med en trækkraft N.

Figur 4.2.2 : De primare revner.

Der betragtes en situation, hvor den forste primære revne i betonlegemet er dannet.

Ved revnen ex betonspandingerne nul. Ved en forøgelse ar afstanden væk fra den forst dannede revne vil betonspændingerne øges, indtil de i en vis afstand $l_{\text {min }}$ fra den forst dannede revne vil vare som for revnedannelsen. Der henvises til figur 4.2.3.b.

Revnen påixker således kun betontrakspændingerne i legemet i afstanden $I_{\text {min }}$ fra revnen. Dette betyder, at den næste primære revne kun kan dannes udenfor det ovenfor angivne interval, hvor spandingstilstanden er som for den Eørste revne dannedes.

Minimumafstanden mellem de primære revnex ex altså 1 min*

Hvis to primare revner dannes i en afstand, dex ex storxe
end $2 \cdot 1_{m i n}$ vil spændingen i betonen mellem disse to revner kunne ná op pá betonens trokstyrke og en ny tredie revne vil have mulighed for at dannes. Der henvises til figur 4.2.3.c.

Dannes der derimod to primare revner i en afstand, der er mindre end $2 \cdot l_{\text {min }}$ vil spændingerne i betonen ikke kunne nå op på betonens trakstyrke, hvilket betyder, at der ikke kan dannes flere primare revnex i dette interval. Der henvises til figur 4.2.3.d.

Dette bevirker, at den færdigudviklede (primære) revnedannelse, også kaldet den fuldt udviklede eller stabiliserede revnedannelse vil bestå af revner med en indbyrdes afstand 1 , hvor 1 ligger i intervallet:

```
I
(4.1)
```

Ved anvendelsen af glat armering istedet for forkammet armering, vil længden $I_{\text {min }}$ være større under de samme betinw gelser, idet kammene i nogen grad virker som revnefremkaldere. Ligeledes vil der ved anvendelsen af glat armering ikke dannes indre revner. Hele revnesystemet vil således besta af primare revnex.

Figur 4.2.3.a.

sigux $4.2 .3 . b$.

Figur 4.2.3.c.

Figur 4.2.3.d.

Figur 4.2 .3 : Spændingsopbygningen ved revnedamelsen.

Udviklingen af de primæce revner finder i almindelighed sted i betonlegemet for armeringsspændingerne beliggende i intervallet :

$$
\begin{equation*}
20 \mathrm{~N} / \mathrm{mm}^{2} \leq \sigma_{\mathrm{s}} \leq 400 \mathrm{~N} / \mathrm{mn}^{2} \tag{4.2}
\end{equation*}
$$

Udviklingen af revnedannelsen til den stabiliserede revneformation vil, som det ses af figur 4.2.4, vare tilendebragt ved en armeringsspanding på ca. $400 \mathrm{~N} / \mathrm{mm}^{2}$.

Figur 4.2.4: Det primære revneforløb.

4.2.3 Besirivelse af de indre revner.

Indre revner udvikles kort tid efter at de første primære revner er dannet. Disse revner dannes kun, nå der anvendes forkammet armering, og de har deres udgangspunkt ved selve kammene.

Dannelsen af de forste indre revner sker i begyndelsen i
nærheden af den primære revne, for så at brede sig henimod midten af afstanden mellem de primære revner, når armeringsspændingen stiger.

De indre revner udvikler sig hurtigere ved dynamisk belastning end ved statisk belastning.

Figur 4.2 .5 viser en skitse af de indre revner.

Figur 4.2.5: De indre revnex.

De indre revner spiller en vigtig rolle i bestemmelsen af den kraftoverforing, der finder sted mellem den forkamnede armering og betonen. Der er mange forskellige faktorer, der influerer på disse revners dannelse. Således er faktorer som daklag, betonens overfladeform, afstand mellem armeringsjern, diameter på armeringsjern og forkamningens udformning vigtige i beskrivelsen af de indre revners dannelse og udvikling.

Som det ses på figur 4.2.5, vil de indre revner, hvis vinkel med armeringen typisk ligger i intervallet 45° til 80° pegende henimod næmeste primære revne, begynde ved den kant af kammene, der ligger narmest en primær revne.

De indre revner dannes lettere, jo mere vinkelret kammene er på armeringens længderetning, samt jo højere kammene er. Ligeledes grlder det, at jo flere kamme, der er, jo flere, men kortere indre xevner, vil der dannes og jo færre kamme desto farre, men længere indre revner vil der dannes.

Revnerne vil beskrive et "kamlignende" mønster i betonen omkring armeringsstængerne, som det ses af figur 4.2.5. Tænderne på denne kam har alle retningen henimod den nærmeste primære revne. Ved stigende armeringsspændinger reduceres adhæsionen mellem armering og beton, således at den altovervejende del af kraftoverforingen finder sted som et tryk på kamene.

Ved anvendelsen af en armeringsstang eller ved stor afstand mellem disse, vil den indre revnefordeling i bew tonen beskrive en form som en kegle med toppunkt i armeringsstangens systemlinie. Forlobet er skitseret i nedenstående figur 4.2.6.

Figur 4.2.6: Indre revneudforming for en enkelt arme ringsstang eller ved stor afstand mellem armeringsstangerne.

Frembringexne af disse kegler vil alle være rettet mod den nærmeste primære revne, som beskrevet i det foregående.

Den indre revnefordeling vil, ved anvendelsen af armeringsjern med en indbyrdes afstand mindre end ca. 80 mm , have et revnebillede, der er noget anderledes. Revnerne vil i dette tilfælde have en tendens til at slå igennem fra jern til jern under en vinkel på ca. 90° med armerinm gen.

Forholdene er skitseret i nedenstående figur 4.2.7.

Figur 4.2.7 : Indre revneforløb ved lille afstand mellem ameringsstængerne.

I et tvarsnit af bjælken i figur 4.2 .7 vil revnefordelingen antage en modificeret udformning, se figur 4.2.8.

Figur 4.2.8: Indre revneudformning ved lille afstand mellem armeringsstængerne.

4.2.4 Beskrivelse of de sekundare revner.

De indre revner dannes lige eftex, at de primære revner ex dannet, altså ved armeringsspændinger pá ca. $20 \mathrm{~N} / \mathrm{mm}^{2}$... $100 \mathrm{~N} / \mathrm{man}^{2}$. Ved rimeljgt hoje armeringsspandinger vil enkelte af de indre revner slả igennem til betonoverfladen.

Disse revner kaldes sekundare revnex.

Hældningen af de sekundære revner er ved armeringen ca. 60°, mens de ved betonoverfladen har en hældning, der er ca. 90°. Generelt vil de sekundære revner have en tendens til at dannes i narheden af en allerede eksisterende pri-
mær revne fremfor mellem to primare revner. Ligeledes vil de sekundære revner have en tilbøjelighed til at dannes ved store (primare) revneafstande.

En vigtig faktor i dannelsen $a \hat{x}$ de sekundare revner er forkamningens udseende.

Ved anvendelsen af tvargaiende xibber er der storre sandsynlighed for dannelsen af sekundzre revner fremfor ved anvendelsen af diagonale ribber.

Pa nedenstående figur 4.2 .9 ses udseendet af de sekundrre revnex.

Figur 4.2.9: Sekundrr revne.

A.2.5 Deskrivelse af de langsoaiende mevner.

Langsgående revner opstår, når der ved anvendelse af forkammet armering belastes til meget hoje armeringsspandin ger.

De langsgående revner dannes oftest, ligesom sekundare
revner, ved store afstande mellem de primære revner. Langsgaiende revner begynder ved en primær revne i nærheden af armeringen og vokser ud mod legemets overflade ved oget belastning. Arsagen til damnelsen af de langsgående revner er den sprængende virkning ellex kilevirkning, dex opstair omkxing armeringsstangerne og som bevirker, at der kommer skrà trykspændinger pa kammene. Disse trykspændinger vil Fore til dannelsen af ringtrakspændinger i den omkringliggende beton. Det ex sailedes ogsà her vigtigt, hvilken type forkamning, dex anvendes. I figur 4.2 .10 er sammenhorende malinger af amexingsspandingen og den totale forlængelse mellem fire gauge punkter, $\Delta 1$, vist sammen med en markering af hvornar de langsgaiende revner begynder at dannes. Som det ses af figuren vil dannelsen af de langsgående revmer være mest udpraget ved anvendelse af høje, tværgaiende ribber og ved ammeringsspændinger over ca. $200 \mathrm{~N} / \mathrm{mm}^{2}$.

$\Delta 1 * 10^{3} \mathrm{mln}$

© - begyndende dannelse af langsgående revner.

Figur 4.2.10: Dannelsen af de langsgående revner for forskellige former af forkamming.

5. 1 Traledninco

Dette afsnit hax til fomal at beskrive de revneteorier for enakset trok, der allerede er beskrevet i litteraturen. Det skal bemarkes, at de gængse revneformler i reglen kun beregner revneasstande og revnevidder i det fuldt udviklede revnestadium.

Formlerne er helt eller næsten helt empiriske. Baggrunden vil ikke blive gennemgàet i denne rapport. Kun hovedresultaterne af de enkelte teorier vil blive præsenteret med en kort beskrivelse af de indgående parametre, saledes at der er mulighed for at foretage en sammenligning med den teom ri, der senere vil blive prasenteret.

5.2 Formler for den primzere revneafstand.

5.2.1 Formel 1 : Efsen \& Krenchel.

Udviklingen af nedenstående formler findes i reference [59.1].

Ved bestemmelsen af revneafstanden efter reference [59.1] benyttes for forkammet armering folgende udtryk for middelrevneafstanden:

$$
\begin{equation*}
l_{\mathrm{tm}}=\mathrm{k}_{1}+\mathrm{k}_{2} \cdot \beta \tag{5.1}
\end{equation*}
$$

Parameteren β benævnes revneparameteren for enakset træk og ex forholdet mellem det effektive beconareal Ace og ar. meringens overfladeareal pr. længdeenhed $\pi \cdot \Sigma d$, altså:

$$
\begin{equation*}
\beta=\frac{A_{\text {cte }}}{\pi \cdot \Sigma d} \tag{5.2}
\end{equation*}
$$

Se endvidere afsnit 6.2.

Ved anvendelsen af formel (5.1) skal β ligge i intervalLet $50 \mathrm{~mm} \leq \beta \leq 200 \mathrm{~mm}$. Nedenstáende figur viser k_{1} og k_{2} som funktion af armeringsspændingen σ_{s}.

Figur 5.2.1: k_{1} og k_{2} som funktion af $\sigma_{s}{ }^{\circ}$

Af figur 5.2.1 kan værdierne af k_{1} og k_{2} for den fuldt udvilalede revnedannelse afleses til $k_{1}=23$ og $k_{2}=0,63$, således at (5.1) blivex:

$$
\begin{equation*}
\mathbf{I}_{\mathrm{tm}}=23+0,63 \cdot \beta \tag{5.3}
\end{equation*}
$$

for β beliggende \mathbf{i} intervallet, $50 \mathrm{~mm} \leq \beta \leq 200 \mathrm{~mm}$.

Som navnt gælder ovenstaende formel for forkammede armeringsjern. Hvis der anvendes glat armering skal der i formel (5.1) multipliceres med 2 på højresiden.

5,2.2 POME1 2: CEB.

CEB angiver i reference [85.1] middelrevneafstanden til :

$$
\begin{equation*}
I_{\mathrm{tm}}=2 \cdot\left(\mathrm{c}+\frac{\mathrm{t}}{10}\right)+\frac{\lambda_{1} \cdot d}{4 \cdot \rho_{e}} \tag{5.4}
\end{equation*}
$$

For λ_{1} anvendes værdieme
$\lambda_{1}=\left[\begin{array}{l}0,4 \text { for forkammet ammering. } \\ 0,6 \text { for forkammede forspandings kabler. } \\ 0,8 \text { for glat slapt-samt forspændt ammering }\end{array}\right.$
t angiver afstanden mellem armeringsjernene.
Ved indførelse af β fås:

$$
\begin{equation*}
I_{\tan }=2 \cdot\left(c+\frac{t}{10}\right)+\lambda_{1} \cdot \beta \tag{5.6}
\end{equation*}
$$

Formlerne (5.4) og (5.6) gælder kun i det fuldt udvik. lede revnestadium.

Et udtryk for den maksimale revneafstand fås ved at multiplicere (5.6) på højresiden med 1.7 , således at:

$$
\begin{equation*}
I_{\text {tmax }}=1,7 \cdot 1_{t \mathrm{~m}} \tag{5.7}
\end{equation*}
$$

Denne maksimale revneafstand er bestemt som en 5% fraktil. Ved anvendelse af (5.6) skal der for $t \geq 15 \cdot d$ anvendes $t=15 \cdot d$.

5.2.3 Formel 3: Leonhardt.

For revneafstanden angivet af Leonhardt, der er taget fra reference [77.1], haves folgende udtryk:

$$
\begin{equation*}
I_{t m}=1_{0}+1,5 \cdot\left(c+\frac{t}{8}\right)+\frac{\lambda_{2} \cdot d}{4 \cdot \rho_{e}} \tag{5.8}
\end{equation*}
$$

For l_{o} der angiver en afstand, der betegnes slippet, d.v.s. den afstand, hvor der ingen vedhaftning ex mellem armering og beton, angives folgende udtryk:

$$
\begin{equation*}
I_{0}=\frac{f_{c t} \cdot \beta}{22,5} \tag{5.9}
\end{equation*}
$$

hvor β indføres $i \mathrm{~mm}$ og $\mathrm{f}_{\mathrm{ct}} \mathrm{i} \mathrm{MPa}$.

Se endvidere afsnit 6.3.6.

Formel (5.8) bliver med indforelsen af β :

$$
\begin{equation*}
I_{t m}=\frac{\varepsilon_{c t} \cdot \beta}{22,5}+1,5 \cdot\left(\mathrm{c}+\frac{\mathrm{t}}{8}\right)+\lambda_{2} \cdot \beta \tag{5.10}
\end{equation*}
$$

t, der angiver armeringsjernenes indbyrdes afstand, sxttes for $t \geq 14 \cdot d$ til $t=14 \cdot d$.

Ved anvendelsen af (5.10) skal der tages hensyn til dæklagets tykkelse c.

For $\quad c<30 \mathrm{~mm}$ indsættes den aktuelle værdi for c direkte i (5.10).

For $\quad c \geq 30 \mathrm{~mm}$ indsættes værdien $c_{1}=30 \cdot \sqrt{\frac{C}{30}}$ For $\quad c_{1} \geq 45 \mathrm{~mm}$ indsxttes $c_{1}=45 \mathrm{~mm}$.

For λ_{2} anvendes:

$$
\lambda_{2}=\left[\begin{array}{l}
0,1-0,4 \text { for forkammet armering. } \\
0,6-0,9 \text { for glat armering. }
\end{array}\right.
$$

For den maksixale revneafstand multipliceres formel (5.10) med faktoren 1,7 på hojresiden.
5.2.3. Formel 4 : Beeby.

Formlerne for Beebys revneafstande ex primært taget fra
reference [72.1] og [79.2]. Formlerne gælder kun for den fuldt udviklede revnedannelse.

For revneafstanden haves:

$$
\begin{equation*}
I_{t}=k_{1} \cdot c+k_{2} \cdot \frac{d}{\rho_{e}} \tag{5.11}
\end{equation*}
$$

Ved indforelse af β fås:

$$
\begin{equation*}
l_{t}=k_{1} \cdot c+4 \cdot k_{2} \cdot \beta \tag{5.12}
\end{equation*}
$$

Faktorerne k_{1} og k_{2} kan bestemmes udfra nedenstående tabel, hvor f er den værdi, som overskrides i. f\% af tilfældene (fraktilværdi).

f	k_{1}	k_{2}
$\%$	-	-
50	1,33	0,08
20	1,59	0,10
5	1,86	0,20
2	1,94	0,28

Tabel 5.1 : Sammenhørende værdier af f, k_{1} og k_{2} 。

Det bemærkes, at værdierne i tabel 5.1 for k_{2} kun er gyldige for forkammede armeringsjern.
5.3 Pormler for den primare remevidde.

5.3.1 Forme1 1: Fisen Erenche1

For middelrevnevidden angiver Efsen og krenchel i referen-
ce [59.1] nedenstående generelle udtryk :

$$
\begin{equation*}
w_{\mathrm{tm}}=1_{\mathrm{tm}} \cdot \epsilon_{\mathrm{s}} \tag{5.13}
\end{equation*}
$$

Ved anvendelsen af formel (5.1), samt indførelse af σ_{s}, fås:

$$
\begin{equation*}
w_{\mathrm{trn}}=\left(k_{1}+k_{2} \cdot \beta\right) \cdot \frac{\sigma_{\mathrm{s}}}{\mathrm{E}_{\mathrm{s}}} \tag{5.14}
\end{equation*}
$$

For den maksimale revnevidde haves :

$$
\begin{equation*}
w_{\operatorname{tmax}}=\mathrm{k} \cdot \mathrm{w}_{\mathrm{tm}} \tag{5.15}
\end{equation*}
$$

For k angives ingen eksakt værdi, men derimod intervaller for hvilken k kan regnes at ligge:

$$
\begin{array}{ll}
\beta=50 \mathrm{~mm}: & 1,4 \leq \mathrm{k} \leq 2,0 \\
\beta=200 \mathrm{~mm}: & 2,0 \leq \mathrm{k} \leq 2,6
\end{array}
$$

I reference [83.1] er det foreslàt at anvende $k=2,0$ som en middelvardi for alle β-vardier.

I nedenstående figur, der er taget fra reference [59.1], er der anfort kurver til aflesning af $w_{\text {tm }}$ fra formel (5.14) som funktion af β og σ_{s}.

Figur 5.3.1: Kurver til bestemmelse af ${ }^{W}$ tm ifblge form mel (5.14)。

5.3.2 FOEMe1 2:CEB.

Middelrevnevidden bestemmes udfra det generelle udtryk :
$w_{t r a}=1_{t m} \cdot \epsilon_{\operatorname{smr}}$

For $I_{t m}$ anvendes udtrykket i afsnit 5.2 .2 , formel (5.4), og for $\epsilon_{\text {smr }}$ anvender ceB et udtryk, der tager hensyn til det armerede betonlegemes arbejdslinie, der mere detaljeret vil blive gennemgàet i afsnit 6.3.2 . For det fuldt udviklede revnesystem kan $\epsilon_{\text {smr }}$ dog tilnærmelsesvis udtrykkes som:

$$
\begin{equation*}
\epsilon_{\mathrm{smr}}=\epsilon_{\mathrm{s}} \cdot \xi \tag{5.17}
\end{equation*}
$$

hvor ξ, der er en fordelingskonstant, tager hensyn til armeringens overfladestruktur og belastningens karakter, således at :

$$
\xi=\left[\begin{array}{lll}
1-\eta_{1} \cdot \eta_{2} \cdot\left(\frac{\sigma_{\mathbf{S r}}}{\sigma_{\mathbf{s}}}\right)^{2} & \text { for } \sigma_{\mathbf{s}} \geq \sigma_{\mathbf{s x}}(5.18) \\
0 & & \text { for } \sigma_{\mathbf{s}}<\sigma_{\mathrm{Sr}} \\
& (5.19)
\end{array}\right.
$$

Værdierne af η_{1} og η_{2} er :

$$
\begin{align*}
& \eta_{1}=\left[\begin{array}{l}
0,5 \text { for glatte armeringsjern } \\
1,0 \text { for forkammet armeringsjern. } \\
\eta_{2}=\left[\begin{array}{l}
1,0 \text { for engangs last. } \\
0,5 \text { for dynamisk last. }
\end{array}\right.
\end{array} .\left\{\begin{array}{l}
\text {. }
\end{array}\right.\right. \tag{5.20}
\end{align*}
$$

Den maksimale revnevidde bestemmes som :

$$
\begin{equation*}
w_{\operatorname{tmax}}=1,7 \cdot w_{\operatorname{tra}} \tag{5.22}
\end{equation*}
$$

5.3.3 Formel 3: Heonhardt.

Leonhardt angiver en formel for revnevidden, der ved anvendelse af formlerne (5.9) og (5.10) kan udtrykkes :

$$
w_{\mathrm{t}}=1,5 \cdot \epsilon_{\mathrm{s}} \cdot\left(2 \cdot 1_{\mathrm{o}}+\xi \cdot\left(1_{\mathrm{tm}}-2 \cdot 1_{0}\right)\right) \quad(5.23)
$$

Her kan formlerne for ξ i (5.18) og (5.19) anvendes.

$$
\begin{equation*}
w_{\text {tmax }}=1,5 \cdot w_{t} \tag{5.24}
\end{equation*}
$$

hvor der for w_{t} naturligvis anvendes formel (5.23).

5.3.4 Formel : Beeby。

Ved bestemmelsen af revnevidden har Beeby indfort en parameter, der tager hensyn til afstanden fra armeringen til det punkt, hvor man \varnothing nsker revnevidden beregnet.

Beeby angiver folgende for revnevidden:

$$
\begin{equation*}
w_{t}=I_{t} \cdot \frac{u_{t}}{c} \cdot \epsilon_{\mathrm{sm}} \tag{5.25}
\end{equation*}
$$

I_{t} er angivet i formel (5.12) mens cer dæklagstykkelsen. Bestemmelsen af u_{t} ses pá nedenstående figur 5.3.2.

Figux 5.3.2: Bestemmelse af u_{t}.

For $\epsilon_{s m}$, der betegner middeltøjningen i armeringen, anvendes et udtryk, der tager hensyn til, at betonen, selv i det revnede stadium, bidrager til trakstivheden af legem met.

$$
\begin{equation*}
\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{s}}-\Delta \epsilon_{1} \tag{5.26}
\end{equation*}
$$

hvor der til bestemmelse af $\Delta \epsilon_{1}$ anvendes:

$$
\begin{equation*}
\Delta \epsilon_{1}=\frac{1,2 \cdot 10^{-3}}{\rho_{e} \cdot{ }_{y}} \tag{5.27}
\end{equation*}
$$

Ved indførelse af β fås:

$$
\begin{equation*}
\Delta \epsilon_{1}=\frac{4,8 \cdot 10^{-3}}{\mathrm{~d} \cdot \mathrm{E}_{\mathrm{Y}}} \cdot \beta \tag{5.28}
\end{equation*}
$$

Hermed bliver revnevidden, ved anvendelsen af (5.25) og (5.26) :

$$
\begin{equation*}
w_{t}=I_{t} \cdot \frac{u_{t}}{c} \cdot\left[\epsilon_{s}-\frac{4,8 \cdot 10^{-3}}{d \cdot f_{y}} \cdot \beta\right] \tag{5.29}
\end{equation*}
$$

Ovenstående er kun en summarisk gennemgang af de eksisterende teorier for revneafstande of revnevidder. En uddybning af teoxien bag de enkelte formler, samt en gennemgang af de overvejelser, der naturligt har fulgt med ved udlew delsen, vil ikke blive gennemgået her. Der má istedet henw vises till den litteratur, som er nævnt i forbindelse med de enkelte udtryk.
6.1 Tndledning.

Med de gængse revmeteorier, der er blevet gennemgået i det foregående afsnit, er det i almindelighed ikke muligt at beregne den revmevidde og den armeringsspænding, der fremw kommer i det tidlige revnestadium, d.v.s. inden det såkaldte fuldt udviklede revnestadium er indtradt.

I dette stadium vil man ofte være i praksis, når det drew jer sig om betonkonstruktioner, der udsættes for små tøjningsbelastninger f.eks ved svind, krybning eller temperaturpåvirkninger.

Der vil i dette afsnit blive udviklet og udarbejdet en teori, der med udgangspunkt i det ovenstående, forsøger at beskrive hele revneudviklingens faser, $d . v . s$ revneformler ved såvel små som store armeringsspændinger.

6.2 Urevnet stadium.

Det nedenfor viste armerede betonlegeme, dex belastes med en aksial trokkraft N, betragtes.

I det urevnede stadium vil der i et vilkarligt snit I-I (se figur 6.2.1) være samme spanaingsfordeling uanset beliggenheden af snit $I-I$ langs med x - aksen.

Denne spxndingstilstand vil optræde i hele legemet med undtagelse af randene S, hvor selve sprndingsoverforingen mellem beton og armering findex sted.

Figur 6.2.1: Armeret betonlegeme.

Idet der i det urevnede stadium forudsættes fuld samvirken mellem armering og beton, vil der i et omrade omkring armeringen gælde, at tøjningerne er :

$$
\begin{equation*}
\epsilon_{\mathrm{s}}(\mathrm{x})=\epsilon_{\mathrm{ct}}(\mathrm{x}) \tag{6.1}
\end{equation*}
$$

og dermed ved hjælp af Hookes lov:

$$
\begin{equation*}
\sigma_{\mathrm{s}}(\mathrm{x})=\mathrm{n} \cdot \sigma_{\mathrm{ct}}(\mathrm{x}) \tag{6.2}
\end{equation*}
$$

hvor $n=\frac{E_{S}}{E_{C}}$.

Ved ligevægtsbetragtning efter x - aksen fås af figur 6.2 .1 :

$$
N=\int_{A_{\mathrm{Ct}}} \sigma_{\mathrm{Ct}}(x, y, z) \cdot d A_{\mathrm{Ct}}+\int_{\mathrm{A}_{\mathrm{S}}} \sigma_{\mathrm{S}}(x, y, z) \cdot \mathrm{dA} \mathrm{~S}_{\mathrm{S}}(6.3)
$$

Idet der ses bort fra randene S i figur 6.2 .1 kan ligevagtsligningen i formel (6.3) omskrives til:

$$
\begin{equation*}
N=\sigma_{c t}(x) \cdot A_{c t}+o_{s}(x) \cdot A_{s} \tag{6.4}
\end{equation*}
$$

Ud fra formlerne (6.2) og (6.4) bliver spændingsfordelingen i beton og armering i det urevnede stadium således:

$$
\begin{equation*}
\sigma_{S}(x)=\frac{n \cdot N}{A_{\text {te }}} \tag{6.5}
\end{equation*}
$$

og

$$
\begin{equation*}
\sigma_{c t}(x)=\frac{N}{A_{t e}} \tag{6.6}
\end{equation*}
$$

Ate, det transformerede areal, er summen af n gange armeringsarealet og det effektive betonareal:

$$
\begin{equation*}
A_{t e}=n \cdot A_{s}+A_{c t} \tag{6.7}
\end{equation*}
$$

Spændingen i armeringen σ_{s} kan regnes konstant over arealet A_{s}.

Indføres armeringsforholdet

$$
\begin{equation*}
\varphi=\frac{A_{s}}{A_{c t}} \tag{6.8}
\end{equation*}
$$

kan formlerne skrives

$$
\begin{align*}
& \sigma_{c t}=\frac{N}{A_{c t}(1+n \varphi)} \tag{6.9}\\
& \sigma_{s}=n \sigma_{c t} \tag{6.10}\\
& A_{t e}=A_{c t}(1+n \varphi) \tag{6.11}
\end{align*}
$$

Sprndingen i betonen kan derimod ikke altid forudsættes konstant over arealet $A_{c t}$. Der indfores derfor et effektivt betonareal i trwkzonen Acte' der tager hensyn til, at de trækspandinger, der optræder i betonen som følge af forbindelsen mellem beton og armering, undertiden har en begrænset udbredelse.

For Acte g\%lder:
$\sigma_{c t \operatorname{middel}}(x) \cdot A_{c t e}=\int_{A c t} \sigma_{c t}(x, y, z) \cdot d A_{c t}$

Forlobet af betonens trakspandinger $\sigma_{c t}(x)$ og dermed udbredelsen af det effektive betonareal Acte er skitseret på figur 6.2.2.

Det skraverede omrade reprosenterer den del af betonen, der ikke påirkes af spandingsoverforelsen mellem de to materialer.

Som en konselkvens af, at $\sigma_{\text {ct }}$ ikke kan regnes jævnt fordelt over bele betonarealet $A_{c t}$, skal et udtryk for det effektive betonareal bestemmes.

CEB [81.1] foreslar, at Acte hojst må beregnes som et rektangulært areal, hvis afstand fra midten af et armeringsjern og til rektanglets side højst må sættes til 7,5.d.

Figur 6.2.2: Det effektive betonareal Acte.

I figur 6.2.3 er i nogle tilfalde vist Acte efter ovenstá ende princip.

Figur 6.2.3: Beregninger af det effektive areal Acte efter CEB [81.1].

Ved beregning af det transformerede areal anvendes derfor $\bar{A}_{\text {cte }} i$ stedet for $A_{c t}{ }^{\circ}$

6. 3 Revnet stadium.

6.3.1 Beskrivelse af revnedammelsen.

I det folgende betragtes et armeret betonlegene, der bliw ver belastet med en aksial trokkxaft $N \geq N_{r}$ (kraften, der Eører til revnedannelse) således, at der opstå revnex i legemet. Den forste revne vil dannes i den armerede betonkonstruktion, når betonen i et snit $x=x_{1}$ har nået sin trækstyrke $\nu_{t} \cdot f_{c t}$.
Faktoren ν_{t} indfores for at tage hensyn til, at spandings-
fordelingen kan være ujævn i det $\emptyset j e b l i k$ revnedannelsen påbegyndes. Ligeledes kan der være spændinger fra svind, der reducerer den ydre kraft, der skal til at frembringe revnedannelse. Storrelsen $\nu_{t} f_{c t}$ kaldes den effektive trakstyrke.

I det ojeblik revnen dannes, hvilket forudsættes at ske momentant, vil en spændingsomlejring i det revnede tværsnit finde sted.

Den samvirken, der før var tilstede i det urevnede stadium, er nu blevet brudt og antages at det revnede snit nu momentant skal have optaget hele sin trækkraft af armeringen bliver spændingstilstanden i snittet

$$
\begin{equation*}
\sigma_{c t}\left(x=x_{1}\right)=0 \tag{6.13}
\end{equation*}
$$

og

$$
\begin{equation*}
\sigma_{s}\left(x=x_{1}\right)=\frac{N\left(x=x_{1}\right)}{A_{s}} \tag{6.14}
\end{equation*}
$$

Den normalkraft, der fremkalder revnedannelse er ifølge formel (6.9)

$$
\begin{equation*}
N_{r}=A_{c t}(1+n \varphi) f_{c t} \tag{6.15}
\end{equation*}
$$

Spandingen i axmeringen ved revnedannelse bliver da

$$
\sigma_{\mathrm{Sr}}=\frac{\mathrm{N}_{r}}{\mathrm{~A}_{\mathrm{s}}}=\frac{1+\mathrm{n} \varphi}{\varphi} \mathrm{f}_{\mathrm{ct}}=\frac{\hat{\mathrm{f}}_{\mathrm{ct}}}{\varphi}+\mathrm{n} \mathrm{f}_{\mathrm{ct}} \quad \text { (6.16) }
$$

Da spandingen i armeringen uniddelbart før revnedannelse er $n \cdot f_{c t}$ bliver spændingsspringet

$$
\begin{equation*}
\Delta \sigma_{s}=\frac{f_{c t}}{\varphi} \tag{6.17}
\end{equation*}
$$

I vixkeligheden vil kraften ikke momentant overføres til armeringen fordi der kræves en vis revnevidde før kraften
er helt forsvundet i betonen, et forhold, der beskrives næmere i brudmekanikken. Hvad der er mere vasentligt er imidlertid, at revnedannelse ofte vil ske for en mindre spænding end $f_{c t} p . g . a$. ekstraspændinger fra svind og fra spændingskoncentrationer. Spændingsspringet er derfor mindre end givet ved formel (6.17). Dette tages der hensyn til ved indførelse af parameteren ν_{t}, effektivitetsfaktoren på betonens trakstyrke. I det figlgende regnes

$$
\begin{equation*}
\sigma_{\mathrm{Sr}} \cong \Delta \sigma_{\mathrm{S}}=\frac{\nu_{t} \hat{\mathrm{~F}}_{\mathrm{ct}}}{\varphi} \tag{6.18}
\end{equation*}
$$

og betonens trækstyrke regnes til $\nu_{t} f_{c t}$.
Spændingsomlejringen bevirker et spændingsspring i armew ringen, der for forskellige armeringsforhold φ er vist på figur 6.3.1.

Figur 6.3.1 : Spændingsspringet i armeringen for enakset træk som funktion af armeringsforholdet φ.

Revnedannelsen i legemet kan, når spændingen oges, opdeles i tre faser.

De tre faser kaldes henholdsvis:

1. Den begyndende revnefase, $I_{t} \geq 2 \cdot \%_{0}$
2. Den udviklende revnefase, $x_{0} \leq 1_{t} \leq 2 \cdot x_{0}$
3. Den stabiliserede revnefase, $I_{t}=x_{0}$.
x_{o} angiver overforingslangden, d.v.s. den strwkning om kring en revne der hax forskydningssprndinger mellem armering og beton efter dannelsen af revnen.

6.3.2 Reskrivelse ar ambejdsinnen for act revnede

legeme.

For at kunne formulere en revneteori, der beskriver revnevidder og revneafstande som funktion af tøjningerne og spandingerne i legemet, má arbejdslinien kendes.

Et legeme, der bliver belastet med en træbkraft N, der er storre end N_{r} (kraften hvor den forste revne dannes), betragtes.

Figur 6.3.2: Armeret betonlegeme.

Derf middeltojning $\epsilon_{\text {sm }}$, der optræder i dette legeme, kan bestemmes som:

$$
\begin{equation*}
\epsilon_{\mathrm{Sm}}=\frac{\Delta l}{l}=\epsilon_{\mathrm{S}}-\Delta \epsilon_{\mathrm{s}} \tag{6.19}
\end{equation*}
$$

Legemets middeltøjning regnes lig med axneringens middeltøjning, ligesom legemets samlede forlwngelse Δl er lig
med armeringens forlængelse. Summen af revnevidderne og forlængelserne af betonen mellem revnerne er ligeledes lig med legemets samlede forlangelse Δl.
$\epsilon_{\text {sm }}$ beskriver således middeltojningen i armeringen målt over revneafstanden 1.
ϵ_{s} er tojningen i armeringen nden hensyntagen til træktøjningen i betonen og $\Delta \epsilon_{s}$ er den reduktion som betonen giver anledning til fordi den medvirker aktivt til overforing af spændingerne, oosai i der revnede stadium.

Fænomenet kaldes på engelsk, tension stiffening.

Betonens bidrag til denne tojningsreduktion er en vigtig parameter ved bestemmelse af revneafstande og revnevidder.

Storrelsen af $\Delta \epsilon_{s}$ vil i den begyndende og udviklende revnefase være aftagende, hvorefter storrelsen i den stabiliserede revnefase er stort set konstant.

CEB foreslå i reference [85.1] en arbejdslinie, der udgøres af en hyperbelgren som vist i figur 6.3.3. Kurven viser $\sigma_{s}=N / A_{s}$ som funktion af $\epsilon_{s m}$. Bemærk, at σ_{S} derfor ikke er spandingen i armeringen for revnedannelse. Efter revnedannelsen er σ_{s} armeringsspændingen i revnerne.

Figur 6.3.3: CEB.'s forslag til spændings-tøjnings sammenhængen for det revnede betonlegeme.

Sammenhængen er i reference [85.1] angivet til:

$$
\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{s}} \cdot\left(1-\left(\frac{\sigma_{\mathrm{sr}}}{\sigma_{\mathrm{s}}}\right)^{2}\right)+\epsilon_{\mathrm{s} 1} \cdot\left(\frac{\sigma_{\mathbf{s r}}}{\sigma_{\mathrm{s}}}\right)^{2}(6.20)
$$

Udtrykket $i(6.20)$ kan i den fuldt udviklede revnefase simplificeres, som det blev vist i afsnit 5.3.2.

Dette udtryk for det revnede legemes arbejdsiinie fra CEB viser sig ikke at kunne forudsige revnevidder og revneafstande sarlig godt i den begyndende og udviklende revnefase.

Forsog fra bl.a. Falkner i reference [69.1] og Rostasy i reserence [76.1] viser at arbejdslinieforlobet i revnew fase I og $I I$ beskrives bedre $v o h . a$ rette linier som det ses af nedenstãende figur, dex visex forsøg med traklege. mer for forskellige armeringsforhold φ.

Figur 6.3.4: Forsøg der viser arbejdslinieforløbet bestemt eksperimentelt af Falkner og Rostasy.
på grundlag af disse og andre forsøg kan man slutte, at en arbejdslinie, der mere realistisk angiver revnefasernes forlob vil vare som angivet i figur 6.3.5.

Figur 6.3.5: Den teoretiske arbejdslinie, der danner grundlag for bestemmelse af revneafstande og revnevidder i revnefaserne I, II og III。

I intervallet $\left[\epsilon_{c t} ; \epsilon_{s m}^{x_{0}}\right.$], d.v.s i den begyndende og udviklende revnefase, beskrives spændings-tojnings sammenhængen v.hj.a. en ret linie med hældningen μ, hvor:

$$
\begin{equation*}
\mu=\frac{(\alpha-1)}{\left(\epsilon_{\operatorname{sm}}^{X_{0}}-\epsilon_{c t}\right)} \tag{6.21}
\end{equation*}
$$

Parameteren α tager hensyn til at trakstyrken varierer hen igennem trakstangen. Der skal således en lidt større kraft til at fremkalde den anden revne sammenlignet med den kraft, der skal til at fremkalde den forsie revne. Forsø-
gene viser, at α antager værdier mellem 1,4 - 1,6. Dette må dog ikke tages til udtryk for, at den maksimale trækstyrke er $40-60 \%$ højere end den minimale. Hvis man benytter beregningsmodellen til at bestemme den maksimale trækspanding, der regnes med, vil den være betydeligt lavere end $\alpha f_{c t}$.

Efter at revneudviklingen er stabiliseret d.v.s. når der ikke dannes flere primære revner, bliver betonens bidrag til trækstivheden af legemet konstant. Også i dette stadium vil der stadig kunne overfores kræfter mellem armeringen og betonen ved hjælp af forskydningsspændinger. Dannelsen af de langsgående revner påviser dette, idet der, nàr armeringsspændingen stiger, som næunt vil opstå en kilevirkning omkring armeringen, som bevirker, at der kommer skrå trykspændinger på kammene. Disse trykspændinger vil føre til dannelsen af ringspændinger i den omkringliggende beton.

I revnefase I og II kan relationen mellem σ_{s} og $\epsilon_{s m}$ på baggrund af ovenstående opskrives til :

$$
\begin{equation*}
\sigma_{\mathrm{s}}=\sigma_{\mathrm{sr}} \cdot\left(\mu \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+1\right) \tag{6.22}
\end{equation*}
$$

Indføres udtrykket for μ fra formel (6.21) fås :
$\sigma_{s}=\sigma_{s x} \cdot\left[\frac{(\alpha-1)}{\left(\epsilon_{\mathrm{sm}}^{\gamma_{0}}-\epsilon_{\mathrm{ct}}\right)} \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+1\right]$
Formel (6.23) gælder for :
og for

$$
\epsilon_{\mathrm{sm}} \in\left[\epsilon_{\mathrm{ct}} ; \epsilon_{\mathrm{s}}^{x_{0}}\right]
$$

$$
\sigma_{s} \in\left[\sigma_{S I} ; \alpha \cdot \sigma_{S I}\right]
$$

] den stabiliserede revnefase, hvor der ikke udvikles flere nye revner, kan sammenhængen mellem $\sigma_{s}-\epsilon_{\mathrm{sm}}$ bestemmes pá grundlag af den i figur 6.3.6 viste spandingsfordeling.

Figur 6.3.6: Armerings- og forskydningsspandingsforlobet der danner grundlag for arbejdslinien i revnefase III.

Nár der tages hensyn til forskydningsspændingen $\tau_{c m}$ bliver spændingen i armeringen σ_{s}^{m} i midten af strakningen $a=$ \% :

$$
\begin{equation*}
\sigma_{\mathrm{s}}^{\mathrm{m}}=\sigma_{\mathrm{s}}-\frac{\mathrm{a}}{2} \cdot \frac{r_{\mathrm{cm}} \cdot \Sigma 0}{\mathrm{~A}_{\mathrm{s}}} \tag{6.24}
\end{equation*}
$$

Hvilket kan omskrives til :

$$
\begin{equation*}
\sigma_{\mathrm{s}}^{\mathrm{m}}=\sigma_{\mathrm{s}}-\frac{2 \cdot \tau_{\mathrm{cm}} \cdot x_{\mathrm{o}}}{\mathrm{~d}} \tag{6.25}
\end{equation*}
$$

idet $a=x_{0} i$ den stabiliserede revnefase.

Ved at betragte figur 6.3.6, kan et udtryk for længdeændringen $\Delta a i$ legemet opstilles som følger :

$$
\begin{equation*}
\Delta \mathbf{a}=\epsilon_{\mathrm{sm}} \cdot \mathbf{a}=2 \cdot\left[\frac{\sigma_{\mathrm{s}}+\sigma_{\mathrm{s}}^{\mathrm{m}}}{2 \cdot \mathrm{E}_{\mathrm{s}}}\right] \cdot \frac{\mathbf{x}_{\mathrm{o}}}{2} \tag{6.26}
\end{equation*}
$$

Indføres formel (6.25) fås :

$$
\begin{equation*}
\epsilon_{\mathrm{sm}}=\frac{\sigma_{\mathrm{s}}}{\mathrm{E}_{\mathrm{s}}} \infty \frac{\tau_{\mathrm{cm}} \cdot \mathrm{x}_{\mathrm{o}}}{\mathrm{~d} \cdot \mathrm{E}_{\mathrm{s}}} \tag{6.27}
\end{equation*}
$$

således at :

$$
\begin{equation*}
\sigma_{\mathrm{s}}=\epsilon_{\mathrm{sm}} \cdot \mathrm{E}_{\mathrm{s}}+\frac{\tau_{\mathrm{cm}} \cdot \mathrm{x}_{\mathrm{o}}}{\mathrm{~d}} \tag{6.28}
\end{equation*}
$$

Bestemmelsen af $\tau_{c m}$ og x_{0} for de enkelte revnefaser er beskrevet i de efterfølgende afsnit.

Ovenstående formel (6.28) gælder for :

$$
\epsilon_{\mathrm{sm}} \in\left[\epsilon_{\mathrm{s}}^{x_{0}} ; \infty \mathbb{1}\right.
$$

og for

$$
\sigma_{\mathrm{s}} \in\left[\alpha \cdot \sigma_{\mathrm{sr}} ; \infty[\right.
$$

6.3.2.1 Samenfatning.

Som en opsumnering af det foregainde afsnit 6.3 .2 nævnes de vigtigste resultater for sammenhængen mellem spændingerne og tøjningeme i det revnede legeme:

For revnefase I og II ex

$$
\sigma_{S}=\sigma_{\mathrm{Sx}} \cdot\left(\mu \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+1\right) \quad(6.29)
$$

der galder for $\epsilon_{s m} \in\left[\epsilon_{c t} ; \epsilon_{S}^{\mathbb{X}_{0}}\right]$ og $\sigma_{s} \in\left[\sigma_{s r} ; \alpha \sigma_{S r}\right]$.

For revnefase III ex

$$
\begin{equation*}
\sigma_{\mathrm{s}}=\epsilon_{\mathrm{sm}} \cdot \mathrm{E}_{\mathrm{s}}+\frac{\tau_{\mathrm{cm}} \cdot \mathrm{x}_{\mathrm{o}}}{\mathrm{~d}} \tag{6.30}
\end{equation*}
$$

der galder for $\left.\epsilon_{s m} \in\right] \epsilon_{\mathbb{S}}^{x_{0}} ; \infty\left[\operatorname{og} \sigma_{\mathbf{s}} \in\right] \alpha \sigma_{s r} ; \infty[$.

6.3.3 Den hegymdende revneraser ar $>2 \cdot x_{0}$

I den begyndende revnefase dannes revnerne tilfaldigt i legemet og med en relativt stor afstand fra hinanden.

Udoredelsen af forshydningsspændingerne τ vil have en enc delig længde, der ex mindre end den halve afstand mellem revnerne, saledes at overforingslangderne x o fra hver revne ikke berprex hinanden.

Udfra den spændingsfordeling der er vist i figur 6.3.7, kan revneafstanden a_{t}, der benævnes transmissionsrevneafstanden, bestemmes. Grunden til at denne afstand indføres er, at der i og omkring revnerne vil ske en ødelæggelse af betonen, saledes at der i dette omráde l_{o} ingen forskydningsoverforelse finder sted mellem armering og beton. Langden I_{o} kaldes slippet.

Virkningen af slippet, der normalt er lille i forhold til revneafstanden, indfores som en korrektion og der tages ikke hensyn til slippet ved beregningen af middeltojningen. Beregning af den endelige revneafstand l_{t} sættes lig med summen af transmissionsrevneafstanden $a_{t}\left(\epsilon_{s m}\right)$ og sliplængden $l_{o}\left(\epsilon_{\mathrm{sm}}\right)$.

$$
\begin{equation*}
1_{t}\left(\epsilon_{s m}\right)=1_{o}\left(\epsilon_{s m}\right)+a_{t}\left(\epsilon_{s m}\right) \tag{6.31}
\end{equation*}
$$

Sliplængden $l_{o}\left(\epsilon_{\text {sm }}\right)$ er nærnere beskrevet i afsnit 6.3.6.
Figur 6.3.7 illustrerer et betonlegeme, der befinder sig i den begyndende revnefase. på figuren ses fordelingen af forskydningsspandingerne samt fordelingen af armerings- og betonspændingerne. Da revnerne dannes tilfældigt afhængigt af trakstyrkens fordeling henover konstruktionen, vil det virkelige billede naturligvis ikke være så regelmæssigt som vist i figur 6.3.7. Hvis revnerne ikke dannes tættere end $2 x_{o}$ i denne fase vil det virkelige billede blot svare til en blanding af de forskellige zoner og resultatet vil blive uændret. Hvis der dannes nogle revnex med mindre afstand end $2 x_{0}$ vil beregningerne ændres, men det viser sig at middelrevnevidde og middelrevneafstand er ufølsom over for disse ændringer. En nøjere statistisk analyse er endnu ikke gennemført.

Tilsvarende ufølsomhed er der i revnefase 2 , hvorfor der galder lignende bemarkningex i tilknytning til figur 6.3.12.

Figur 6.3.7: Spændingsfordelingerne i den begyndende revnefase.

6.3.3.1 Bestemmelse af transmissionsrewneafstanden a_{t} for $H_{0}>2 . \%_{0}$

For enakset trak er udtrykket for spændingen i armeringen σ_{s} i revnen, jvfo figur 6.3.7:

$$
\begin{equation*}
\sigma_{\mathrm{sr}}=\frac{\nu_{\mathrm{t}} \cdot \mathrm{f}_{\mathrm{ct}}}{\varphi} \tag{6.32}
\end{equation*}
$$

hvilket betyder, at arbejdslinien for det revnede legeme ved indsættelse af (6.32) i (6.23) bliver:
$\sigma_{s}=\frac{\nu_{t} \cdot f_{c t}}{\varphi}\left[\frac{(\alpha-1)}{\left(\epsilon_{s m}^{X_{0}}-\epsilon_{c t}\right)}\left(\epsilon_{s m}-\epsilon_{c t}\right)+1\right]$
Ved at betragte figur 6.3 .7 ses, at i den begyndende revnefase, hvor afstanden mellem revnerne er stor, vil spændingen i midten af transmissionsrevneafstanden a_{t} kunne angives som :

$$
\begin{equation*}
\sigma_{s}^{m}\left[x=\frac{a_{t}}{2}\right]=n \cdot \nu_{t} \cdot f_{c t} \tag{6.34}
\end{equation*}
$$

Belastningssituationen pá figur 6.3 .8 betragtes :

Figur 6.3.8: Betonlegeme med en tøjningsbelastning ϵ_{sm}.
Dette legeme, der belastes med en tøjning ϵ_{sm}, vil når den begyndende revnefase er nået, have fáet en længdeændring Δa_{t} givet ved (jvf. figur 6.3 .7 samt formlerne (6.32) og (6.34)):
$\Delta a_{t}=\epsilon_{s m} a_{t}\left(\epsilon_{s m}\right)=2\left[\frac{\sigma_{s}+n \cdot \nu_{t} \cdot f_{c t}}{2 \cdot E_{s}}\right] x_{0}+\frac{n \cdot \nu_{t} \cdot f_{c t}}{E}\left(a_{t}\left(\epsilon_{s m}\right)-2 x_{0}\right)$
hvilket kan omskrives til
$a_{t}\left(\epsilon_{s m}\right)\left[\epsilon_{s m}-\frac{n \cdot \nu_{t} \cdot f_{c t}}{E_{s}}\right]=\left[\frac{\sigma_{s}+n \cdot \nu_{t} \cdot f_{c t}}{E_{s}}-\frac{2 \cdot n \cdot \nu_{t} \cdot \varepsilon_{c t}}{E_{s}}\right] x_{0}$
og dermed :
$a_{t}\left(\epsilon_{s m}\right)=\frac{\left(\sigma_{s} \times n \cdot \nu_{t} \cdot f_{c t}\right)}{\left(E_{s} \cdot \epsilon_{s m}-n \cdot \nu_{t} \cdot f_{c t}\right)} x_{o}$
Indfores ligning (6.33) i (6.35) fås:
$a_{t}\left(\epsilon_{s m}\right)=\left[\frac{\frac{\nu_{t} \cdot f_{c t}}{\varphi}\left[\frac{(\alpha-1)}{\left(\epsilon_{s m}^{X_{0}}-\epsilon_{c t}\right)}\left(\epsilon_{s m}-\epsilon_{c t}\right)+1\right]-n \cdot \nu_{t} \cdot f_{c t}}{\left(E_{s} \cdot \epsilon_{s m}-n \cdot \nu_{t} \cdot f_{c t}\right)}\right] x_{0}$

Ved indførelse af μ efter formel (6.21) samt ved at udnytte at

$$
\begin{equation*}
\epsilon_{c t}=\frac{\nu_{t} \cdot f_{c t}}{E_{c}}=\frac{n \cdot \nu_{t} \cdot f_{c t}}{E_{s}} \tag{6.37}
\end{equation*}
$$

kan udtrykket i (6.36) omskrives til :

$$
\begin{equation*}
a_{t}\left(\epsilon_{\mathrm{sm}}\right)=\frac{\epsilon_{\mathrm{ct}} \cdot\left[\frac{1}{\varphi}\left[\mu \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+1\right]-\mathrm{n}\right]_{\mathrm{x}}}{n \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)} \tag{6.38}
\end{equation*}
$$

6.3.3.2 Gransevardiunderspgelse I.

Formel (6.38) gælder for $a_{t} \geq 2 \cdot x_{0}$ og for $\epsilon_{s m}$ liggende i intervallet :

$$
\epsilon_{\mathrm{sm}} \in\left[\epsilon_{\mathrm{ct}} ; \epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\right] \quad(6.39)
$$

Et udtryk for $\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}$ fås ved anvendelse af (6.38) med $a_{t}\left(\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\right)=2 \mathrm{x}_{\mathrm{o}}$ 。

Indswttelse giver :

$$
2 x_{0}=\frac{\epsilon_{\mathrm{ct}}\left[\frac{1}{\varphi}\left[\mu \cdot\left(\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}-\epsilon_{\mathrm{ct}}\right)+1\right]-\mathrm{n}\right]}{\mathrm{n}\left(\epsilon_{\mathrm{sm}}^{2 x_{0}}-\epsilon_{\mathrm{ct}}\right)} \mathrm{x}_{0}(6.40)
$$

Ved omskrivning af ovenstående udtryk fås :
$\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\left[2 \cdot \mathrm{n}-\frac{\mu \cdot \epsilon_{\mathrm{ct}}}{\varphi}\right]=\epsilon_{\mathrm{ct}}\left[\frac{1}{\varphi}+\mathrm{n}-\frac{\mu \cdot \epsilon_{c t}}{\varphi}\right]$
D.v.s. :

$$
\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}=\frac{\varphi \cdot \epsilon_{c t}}{2 \cdot n \cdot \varphi-\mu \cdot \epsilon_{c t}} \cdot\left[\frac{1}{\varphi}+\mathrm{n}-\frac{\mu \cdot \epsilon_{\mathrm{ct}}}{\varphi}\right] \quad(6.41)
$$

$\epsilon_{\operatorname{sm}}^{2 x_{0}}$ repræsenterer altså overgangstojningen i armeringen mellem den begyndende og udviklende revnefase.

6.3.3.3 Bestemmelse of overforingstangden *o:

Der betragtes en længde x_{o} mellen to snit I og II i et armeret betonlegene belastet med en trækkraft.

Figur 6.3.9: Udsnit af et armeret betonlegeme.

Endringen af kraften i armeringen fra snit I til snit II er

$$
\Delta T=T(I)-T(I I)=\int_{A_{S}} \Delta \sigma_{S}(x, y) d A_{S} \quad(6.42)
$$

Endringen af kraften i armeringen ΔT bliver mellem snit I og II overført som forskydningsspændinger mellem armering og beton, således at :

$$
\begin{equation*}
\Delta T=\int_{A_{\tau}} \tau_{C}(x, y) \cdot d A_{\tau} \tag{6.43}
\end{equation*}
$$

Antages samme diameter for de enkelte armeringsjern kan (6.43) omskrives til :

$$
\begin{equation*}
\Delta T=\pi \cdot \Sigma d \cdot \int_{0}^{x_{0}} \tau_{c}(x) \cdot d x \tag{6.44}
\end{equation*}
$$

Indsættes dette udtryk i ligning (6.42) fås identiteten:

$$
\pi \cdot \Sigma \mathrm{d} \cdot \int_{0}^{x_{0}} \tau_{\mathrm{c}}(\mathrm{x}) \cdot \mathrm{dx}=\int_{A_{\mathrm{S}}} \Delta \sigma_{\mathrm{S}}(\mathrm{x}, \mathrm{y}) \cdot \mathrm{dA}_{\mathrm{s}}(6.45)
$$

Det kvalitative forlob af $\tau_{c}(x)$ er som vist i figur 6.3.10, se f.eks. [77.1].

Figur 6.3.10: Forskydningsspandingen $\tau_{c}(x)$ fra reference [77.1].

Forskydningsspændingen τ_{c} er naturligvis en funktion af deformationsforholdene i omegnen af armeringsstangen, herunder forløbet og udstrækningen af de sekundære revner. Man kunne tænke sig at beskrive forholdene v.h.a. en $\tau_{c}-\delta$ relation, hvor δ er den relative flytning mellem armering og beton. Denne kunne f.eks. have den i fig. 6.3.11 viste form.

Der vil imidlertid blive gjort den stærkt simplificerende antagelse, at relationen er lineærelastisk-idealplastisk og der vil blive set bort fra den lineærelastiske del,
d.v.s. der regnes stift-plastisk. "Flydegronsen" antages at have vardien $\lambda \nu_{t^{\prime}}{ }^{f} t$, der således bliver lig med mida delvardien

$$
\tau_{\mathrm{cm}} \cdot x_{0}=\int_{0}^{x_{0}} \tau_{c}(x) \cdot d x \quad(6.46)
$$

Figur 6.3.11: Forskydningsspændingen som funktion af den relative bevrgelse δ mellem armering og beton.

Denne forudsætning er uden bemæxkninger blev anvendt ved bestemmelsen af arbejdslinien i revnefase III og τ_{cm} formudsxttes saledes fremover at have den konstante vardi:

$$
\begin{equation*}
\tau_{\mathrm{cm}}=\lambda \cdot \nu_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{ct}} \tag{6.47}
\end{equation*}
$$

Der henvises til figur 6.3 .6 og 6.3 .7 , hvor fordelingen af τ_{cm} er skitseret.

Storrelsen af τ_{cm} antages foruden \hat{f}_{ct} at afhænge af overfladestrukturen af ammeringen.

Denne afhængighed beskrives v.h.a. parameteren λ. Forsøg viser at λ kun varierer begronset ved forskellige ribbeudformninger, således at det som hovedregel kun er nødvendigt at skelne mellem forkammede og glatte armeringsjern.

Forsøg, der senere vil blive beskrevet, viser at der for λ kan xegnes med folgende værdiintervaller:

$$
\lambda=\left[\begin{array}{ll}
1,8-2,5 & \text { for forkammede armeringsjern. } \\
0,8-1,3 & \text { for glatte armeringsjern. }
\end{array}\right. \text { (6.48) }
$$

Benyttes værdien af τ_{cm} givet ved (6.47), kan formel (6.45) omskrives til :
$\tau_{\mathrm{cm}} \cdot x_{o} \cdot \pi \cdot \Sigma \mathrm{~d}=\left(\sigma_{\mathrm{s}}-\mathrm{n} \cdot \nu_{t} \cdot \mathrm{f}_{\mathrm{ct}}\right) \cdot \mathrm{A}_{\mathrm{s}}$

Da der regnes med svagt stigende σ_{s} under revneudviklingen findes x_{0} under revneudviklingen altsa storre, end $x_{o}{ }^{-}$ værdien ved begyndende revnedannelse, hvilket betyder, at betonens trækspænding, bliver storre end $\nu_{t} f$ ft. Der skulle derfor egentligt regnes med denne større trækspænding ved bestemmelse af forlængelsen $\Delta a_{t} i$ tilfældet $I>2 x_{0}$, se afsnit 6.3.3.1. Dette er ikke gjort, da betydningen skønnes minimal.

Hermed bliver x_{o} ved anvendelse af (6.47) :

$$
\begin{equation*}
x_{o}=\frac{d}{4 \cdot \lambda \cdot \nu_{t} \cdot f_{c t}}\left(\sigma_{s}-n \cdot \nu_{t} \cdot f_{c t}\right) \tag{6.50}
\end{equation*}
$$

Indfores udtrykket for σ_{s} ved enakset træk fas:
$x_{0}=\frac{d}{4 \cdot \lambda \cdot \nu_{t} \cdot I_{c t}} \cdot\left[\frac{\nu_{t} \cdot \varepsilon_{c t}}{\varphi}\left[\frac{(\alpha-1)}{\left(\epsilon_{s m}^{x_{0}-\epsilon_{c t}}\right)} \cdot\left(\epsilon_{\operatorname{sm}^{-}-\epsilon_{c t}}\right)+1\right]-n \cdot \nu_{t} \cdot f_{c t}\right]$

Ved omskrivning og v.h.a. formel (6.21) fås:

$$
\begin{equation*}
x_{o}=\frac{d}{4 \cdot \lambda} \cdot\left[\frac{\mu}{\varphi} \cdot\left(\epsilon_{\operatorname{sm}}-\epsilon_{c t}\right)+\frac{1}{\varphi}-n\right] \tag{6.51}
\end{equation*}
$$

Ved indsættelse af dette udtryk for overføringslængden x_{o} i formel (6.38) bliver transmissionsrevneafstanden $a_{t}\left(\epsilon_{s m}\right)$ for revnefase I :
$a_{t}\left(\epsilon_{s m}\right)=\frac{\alpha \cdot \epsilon_{c t} \cdot\left[\frac{1}{\varphi}\left[\mu \cdot\left(\epsilon_{s m}-\epsilon_{c t}\right)+1\right]-n\right]}{4 \cdot \lambda \cdot n \cdot\left(\epsilon_{s m}-\epsilon_{c t}\right)} \cdot\left[\frac{L}{\varphi} \cdot\left(\epsilon_{s m}-\epsilon_{c t}\right)+\frac{1}{\varphi}-n\right]$

Denne formel kan simplificeres til :

$$
a_{t}\left(\epsilon_{\mathrm{sm}}\right)=\frac{d \cdot \epsilon_{\mathrm{ct}}}{4 \cdot \lambda \cdot \mathrm{n} \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)} \cdot\left[\frac{\mu}{\varphi} \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}-\mathrm{n}\right]^{2}(6.52)
$$

Formel (6.52) er det endelige udtryk for transmissionsrevneafstanden $a_{t}\left(\epsilon_{s m}\right)$ i revnefase I, altsá for $\epsilon_{s m}$ liggende intervallet:

$$
\epsilon_{\mathrm{sm}} \in\left[\epsilon_{\mathrm{ct}} ; \epsilon_{\mathrm{sm}}^{2 x_{0}}\right]
$$

6.3.4 Ders udviklende revnefase $x_{0}<a_{0}<2 \cdot x_{0}{ }_{0}$

I denne fase, der også kunne kaldes den primære revnefase, begynder revnerne at dannes relativt hurtigt. Disse revner dannes mellem revnerne i den forste fase og overførings langderne x_{0} begynder at ligge i forlængelse af hinanden, saledes at der ikke langere ex et forskydningsfrit område mellen revnerne.

Idet der i denne fase udvikles mange revner, oges revnevidden w_{t} ikke i samme omfang som armeringsspændingerne pges.

På onstående figur 6.3.12 ses en illustration af et betonlegeme, der befinder sig i denne fase. På figuren ses tillige fordelingerne af forskydningsspændingerne samt af armerings- og betonspændingerne.

Figur 6.3.12: Spændingsfordelingen i den udviklende revnefase.

6.3.4.1 Bestemelse af iransmissionsrevneafstanden at FOT $x_{0}<a_{G}<2 \cdot x_{0^{\circ}}$

Der betragtes igen belastningssituationen givet ved tojningen ϵ_{sm}, se figur 6.3.8.

Spændingsfordelingen fra figur 6.3.12 samt formel (6.32) giver :

Spændingen i selve revnen :
$\sigma_{S r}=\frac{\nu_{t} \cdot \mathbf{f}_{\mathrm{ct}}}{\varphi}$
og i midten af det revnede legeme:
$\sigma_{s}^{m}\left[x=\frac{a_{t}}{2}\right]=\sigma_{s}-\frac{\tau_{c m} \cdot \Sigma 0}{A_{s}} \cdot \frac{a_{t}}{2}$
d.v.s.
$\sigma_{s}^{m}\left[x=\frac{a_{t}}{2}\right]=\sigma_{s}-\frac{4 \cdot \tau_{c m} \cdot \pi \cdot \Sigma d}{\pi \cdot \Sigma(d)^{2}} \cdot \frac{a_{t}}{2}$
Dette kan simplificeres til :
$\sigma_{s}^{m}\left[x=\frac{a_{t}}{2}\right]=\sigma_{s}-\frac{2 \cdot \tau_{c m} \cdot a_{t}}{d}$
For σ_{s} anvendes (6.23) med $\sigma_{\text {sr }}$ fra (6.53).

Længdeændringen $\Delta a_{t}\left(\epsilon_{s m}\right)$ af dette legeme, når det befinder sig i denne revnefase II, kan ved hjalp af de ovenfor beregnede spændinger udtrykkes ved:

$$
\begin{equation*}
\Delta a_{t}=\epsilon_{\mathrm{sm}} \cdot a_{\mathrm{t}}=2 \cdot\left[\frac{\sigma_{\mathrm{s}}+\sigma_{\mathrm{s}}^{\mathrm{m}}}{2 \cdot \mathrm{E}_{\mathrm{s}}}\right] \cdot \frac{a_{t}}{2} \tag{6.57}
\end{equation*}
$$

Indføres udtrykket (6.56) i (6.57) fås:
$\epsilon_{\mathrm{Sm}}=\frac{1}{\mathrm{E}_{\mathrm{S}}}\left[\sigma_{\mathrm{s}}-\frac{r_{\mathrm{Cm}} \cdot a_{\mathrm{t}}}{d}\right]$
hvorefter a_{t} bliver :
$a_{t}\left(\epsilon_{\mathrm{sm}}\right)=\frac{\mathrm{d}}{\tau_{\mathrm{cm}}}\left[\sigma_{\mathrm{s}}-E_{\mathrm{s}} \cdot \epsilon_{\mathrm{sm}}\right]$
Ved indsættelse af udtrykket for σ_{s} givet ved (6.33) samt $\tau_{\mathrm{cm}}=\lambda \cdot \nu_{t} \cdot f_{c t}$ blivex tramsmissionsrevneafstanden a_{t} for revnefase II:
$a_{t}\left(\epsilon_{\mathrm{sm}}\right)=\frac{\alpha}{\lambda} \cdot\left[\frac{1}{\varphi} \cdot\left[\frac{(\alpha-1)}{\left(\epsilon_{\mathrm{sm}}^{\mathrm{X}_{0}}-\epsilon_{\mathrm{ct}}\right)} \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+1\right]-\frac{\mathrm{E}_{\mathrm{s}} \cdot \epsilon_{\mathrm{sm}}}{\epsilon_{\mathrm{ct}}}\right]$
Indføres parameteren μ fås :

$$
a_{t}\left(\epsilon_{\mathrm{sm}}\right)=\frac{d}{\lambda}\left[\frac{\mu}{\varphi} \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}-\frac{\mathrm{n} \cdot \epsilon_{\mathrm{sm}}}{\epsilon_{\mathrm{ct}}}\right] \quad(6.60)
$$

Formel (6.60) er det endelige udtryk for transmissionsw revneafstanden $a_{c}\left(\epsilon_{s m}\right)$ i revnefase $I I$, altså for $\epsilon_{s m}$ liggende i intervallet :

$$
\epsilon_{\mathrm{sm}} \in\left[\epsilon_{\mathrm{sm}}^{2 x_{0}} ; \epsilon_{\mathrm{sm}}^{\mathrm{x}_{0}}\right]
$$

6.3.4.2 Grensevardiundersgolse Ir.

For $a_{t}=2 \cdot x_{o}$ skal $\sigma_{s}^{m}(I)=\sigma_{s}^{m}(I I)$.
Af formel (6.56) fås ved indsettelse :
$\sigma_{s}^{m}(I I)=\sigma_{s}-\frac{2 \cdot \lambda \cdot \nu_{t} \cdot f_{c t} \cdot 2 \cdot x_{o}}{d}$,
hyor der for $\tau_{c m}$ er anvendt udtrykket fra (6.47).

Ved indsættelse af udtrykkene for σ_{s} og x_{0} fra henholdsvis (6.33) og (6.51) bliver (6.61) :
$\left.\sigma_{s}^{\mathrm{M}}(\mathrm{II})=\frac{\nu_{t}{ }^{f} \mathrm{ct}}{\varphi}\left[\mu\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+1\right)\right]-\nu_{\mathrm{t}} \mathrm{f}_{\mathrm{ct}}\left[\frac{\mu}{\varphi}\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}-\mathrm{n}\right]$

Hvilket giver :
$\sigma_{\mathrm{s}}^{\mathrm{m}}(\mathrm{II})=\mathrm{n} \cdot \nu_{\mathrm{t}} \cdot \mathrm{f}_{\mathrm{ct}}$
(6.62) ses at være i overenstemmelse med formel (6.34), således at overgangsbetingelsen for armeringsspændingen er opfyldt.

6.3.4.3 Granseverdinndersgaelse TII.

Den nedre t \varnothing jningsgrænse fox revnefase $I I, \epsilon_{s m}^{2 x_{0}}$, kan bestemmes ved indsættelse af $a_{t}=2 \cdot x_{0}$ i formel (6.59), hvilket giver :
$2 x_{0}=\frac{d}{r_{\mathrm{cm}}}\left[\sigma_{\mathrm{s}}-\mathrm{E}_{\mathrm{s}} \epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\right]$
For σ_{s} anvendes naturligvis $\sigma_{\mathrm{s}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\right)$ og for τ_{cm} anvendes en omskrivning af formel (6.49):

$$
\begin{equation*}
r_{\mathrm{cm}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\right)=\frac{\mathrm{d}}{4 \cdot \mathrm{x}_{\mathrm{o}}}\left[\sigma_{\mathrm{s}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\right)-\mathrm{n} \nu_{\mathrm{t}} \hat{\mathrm{E}}_{\mathrm{ct}}\right] \tag{6.64}
\end{equation*}
$$

Indsættes $\sigma_{\mathrm{s}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\right)$ fra formel (6.33) med parameteren μ fås:

$$
\begin{equation*}
\tau_{\mathrm{cm}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\right)=\frac{\mathrm{d} \nu_{\mathrm{t}} \mathrm{f}_{\mathrm{ct}}}{4 x_{0}}\left[\frac{\mu}{\varphi}\left(\epsilon_{\mathrm{sm}}^{2 x_{0}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}-\mathrm{n}\right] \tag{6.65}
\end{equation*}
$$

Indsættes dette i (6.63) fås:

$$
2 x_{0}=\frac{4 \cdot x_{0}}{\left[\frac{\mu}{\varphi} \cdot\left(\epsilon_{\mathrm{sm}}^{2 x_{0}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}-\mathrm{n}\right]}\left[\frac{\mu}{\varphi}\left(\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}-\frac{\mathrm{E}_{\mathrm{s}} \cdot \epsilon_{\mathrm{sm}}^{2 x_{0}}}{\nu_{\mathrm{t}} \cdot \hat{\mathrm{f}}_{\mathrm{ct}}}\right]
$$

Ved en del omskrivninger kommer man til:
$\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\left[2 \mathrm{E}_{\mathrm{s}}-\frac{\nu_{t} \cdot f_{\mathrm{ct}}}{\varphi} \mu\right]=\nu_{t} f_{c t}\left[\frac{1}{\varphi}\left[1-\mu \cdot \epsilon_{\mathrm{ct}}\right]+n\right]$
og dermed,
$\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}=\frac{\varphi \cdot \nu_{t} \cdot f_{\mathrm{c}} t}{\left(2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \varphi-\nu_{t} \cdot f_{\mathrm{ct}} \cdot \mu\right)}\left[\frac{1}{\varphi}\left[1-\mu \cdot \epsilon_{\mathrm{ct}}\right]+\mathrm{n}\right]$
Da $\epsilon_{c t}=\frac{\mathrm{n} \cdot \nu_{t} \cdot \mathrm{f}_{\mathrm{ct}}}{E_{\mathrm{s}}}$ bliver:

$$
\epsilon_{\mathrm{sm}}^{2 x_{0}}=\frac{\varphi \cdot \epsilon_{\mathrm{ct}}}{2 \cdot \mathrm{n} \cdot \varphi-\mu \cdot \epsilon_{\mathrm{ct}}}\left[\frac{1}{\varphi}+\mathrm{n}-\frac{\mu \cdot \epsilon_{\mathrm{ct}}}{\varphi}\right] \quad(6.68)
$$

Sammenlignes ovenstående udtrylk med formel (6.41) ses, at grænserne for de to revnefaser er ens, således at overgangsbetingelsen er opfyldt.

6.3.4.4 Gransewardiundersqgelse IV.

Den \emptyset vre tøjningsgranse for revnefase II, $\epsilon_{\mathrm{Sm}}^{\mathrm{X}_{0}}$, kan bestemmes ved indswrtelse af $a_{t}=x_{o}$ i formel (6.59), hvilket giver:
$x_{0}=\frac{a}{\tau_{\mathrm{cm}}}\left[\sigma_{\mathrm{s}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{\mathrm{x}_{0}}\right)-\mathrm{E}_{\mathrm{s}} \cdot \epsilon_{\mathrm{sm}}^{\mathrm{X}_{0}}\right]$

Ifølge formel (6.33) er

$$
\begin{equation*}
\sigma_{\mathrm{s}}\left(\epsilon_{\mathrm{Sm}}=\epsilon_{\mathrm{Sm}}^{\mathrm{X}_{0}}\right)=\frac{\alpha \cdot \nu_{t} \cdot \hat{f}_{\mathrm{ct}}}{\varphi} \tag{6.70}
\end{equation*}
$$

Dette betyder, at $\tau_{\mathrm{cm}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{\mathrm{X}_{0}}\right)$ v.hj.a. (6.49) bliver:
$\tau_{\mathrm{cm}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{\mathrm{X}_{0}}\right)=\frac{\mathrm{d}}{4 \cdot \mathrm{X}_{0}} \cdot\left[\frac{\alpha \cdot \nu_{t} \cdot{ }^{\mathrm{f}} \mathrm{ct}}{\varphi}-\mathrm{E}_{\mathrm{s}} \cdot \epsilon_{\mathrm{sm}}^{\mathrm{X}_{0}}\right]$

Indsættes dette $i(6.69)$ fás et udtryk der indeholder $\epsilon_{s m}^{x_{0}}$. $\mathrm{x}_{\mathrm{o}}=\frac{4 \cdot \mathrm{x}_{0}}{\left[\frac{\alpha}{\varphi}-\mathrm{n}\right]} \cdot\left[\frac{\alpha}{\varphi}-\frac{\mathrm{E}_{\mathrm{s}} \cdot \epsilon_{\mathrm{sm}}^{\mathrm{x}_{0}}}{\nu_{\mathrm{t}} \cdot \mathrm{f}_{\mathrm{ct}}}\right]$

Simpel onskrivning giver :

$$
\begin{equation*}
\epsilon_{\mathrm{sm}}^{\mathrm{X}_{0}}=\frac{\mathrm{n} \cdot \nu_{t} \cdot \mathscr{E}_{c t}}{4 \cdot E_{s}} \cdot\left[\frac{3 \cdot \alpha}{\mathrm{n} \cdot \varphi}+1\right] \tag{6.73}
\end{equation*}
$$

$\epsilon_{s m}^{\mathrm{X}_{0}}$ repræsenterer overgangstøjningen mellem den udviklende og stabiliserede revnefase.

6.3.5 Den stabiliserede revnefase, $a_{t}=x_{0}{ }^{\circ}$

I den stabiliserede revnefase udvikles der ikke flere revner for stigende armeringsspænding σ_{s}, således at transmissionsrevneafstanden a_{t} antager værdien $a_{t}\left(\epsilon_{s m}\right)=x_{0}$.

I denne fase er revnevidden w_{t} mindst mulig (under hensyntagen til den påsatte belastning) og revneantallet er størst muligt med en indbyrdes afstand pa $l_{t}=l_{\mathrm{min}}$. For stigende armeringsspanding vokser revnevidden proportionalt med middeltøjningen i armeringen ϵ_{sm}.

6.3.5.1 Bestemmelse ar transmissionscevneafstanden as for CB

Nax den stabiliserede revnefase ex nået, vil forlobet af armeringsspandingerne σ_{s} endres til det iformel (6.28) angivne, altså :
$\sigma_{\mathrm{s}}=\epsilon_{\mathrm{sm}} \cdot \mathrm{E}_{\mathrm{s}}+\frac{\tau_{\mathrm{cm}} \cdot \mathrm{x}_{\mathrm{o}}}{\mathrm{d}}$

Ligeledes i denne revnefase vil overforingslangden x_{o} an tage en konstant værdi givet ved (6.51) med $\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{\mathrm{K}_{0}}$ således at :

$$
\begin{equation*}
a_{t}=x_{0}=\frac{n \cdot d}{4 \cdot \lambda} \cdot\left[\frac{\alpha}{n \cdot \varphi}-1\right] \tag{6.75}
\end{equation*}
$$

6.3.5.2 Gransevardiurdersogelse V.

Den nedre tojningsgrense for revnefase III, $\epsilon_{\text {sm }}^{K_{0}}$, kan bestemmes ved indsattelse af $\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{x_{0}}$ i formel (6.23), hvilket giver:
$\sigma_{\mathrm{s}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{Sm}}^{\mathrm{X}_{0}}\right)=\alpha \cdot \sigma_{\mathrm{SE}}$
der for enakset trak bliver til :
$\sigma_{\mathbf{s}}\left(\epsilon_{\mathbf{s m}}=\epsilon_{\mathbf{s m}}^{\mathrm{X}_{0}}\right)=\frac{\alpha \cdot \nu_{\mathbf{t}} \cdot \mathrm{f}_{\mathrm{ct}}}{\varphi}$

Indsattes (6.77) i udtrykket for arbejdslinien for det revnede legeme i revnefase III, formel (6.74), fås:
$\frac{\alpha \cdot \nu_{t} \cdot \mathrm{f}_{c t}}{\varphi}=\epsilon_{\mathrm{sm}}^{\mathrm{X}_{0}} \cdot \mathrm{E}_{\mathrm{S}}+\frac{\tau_{\mathrm{cm}} \cdot \mathrm{X}_{0}}{\mathrm{~d}}$

Anvendes udtrykket for r_{cm} givet ved (6.47) og x_{o} fra (6.75) fås:
$\frac{\alpha \cdot \nu_{t} \cdot \hat{\mathbf{F}}_{\mathrm{ct}}}{\varphi}=\epsilon_{\mathrm{Sm}_{\mathrm{K}} \mathrm{E}_{\mathrm{s}}}+\frac{\lambda \cdot \nu_{t} \cdot \mathrm{f}_{\mathrm{Ct}} \cdot \frac{\mathrm{d}}{4 \cdot \lambda} \cdot\left[\frac{\alpha}{\varphi}-\mathrm{n}\right]}{\mathrm{d}} \quad(6.79)$
hvilket igen kan omskrives til :

$$
\begin{equation*}
\epsilon_{s m}^{X_{0}}=\frac{n \cdot \nu_{t} \cdot f_{c t}}{4 \cdot E_{s}}\left[\frac{3 \cdot \alpha}{n \cdot \varphi}+1\right] \tag{6.80}
\end{equation*}
$$

Den nedre tøjningsgranse i revnefase III er således identisk med den øvre granse i revnefase II (formel (6.73)), således at overgangsbetingelserne ex opfyldt.

6.3.6 slip teorier.

6.3.6.1 Indledning.

Når en revne dannes i betonen, vil der, som for beskrevet, ske en spændingsomlejring i legemet, således at armeringen má optage hele kraften \mathbf{i} dette snit. Med dette spandingsspring $\Delta \sigma_{s}$ i ammeringen begynder udviklingen af de indre revner omkring den primare revne. I dette omrade er der reelt tale om et slip, d.v.s. et omrade, hvor dex praktisk taget ingen spxndinger overfores mellem de to materialer.

Efter at de indre revner begynder at dannes, vil der stam dig kunne overføres forskydningsspændinger, men efterhån den som armeringsspændingen øges, vil det forøgede tryk på de kame, der er i umiddelbar nærhed af den primære revne, bevirke, at de indre revners udbredelse bliver mexe markant og til sidst slår de igennem til enten betonoverfladen eller til den nærmeste primære revne for derefter at blive til sekundære revner.

De forsøg, der ex blevet udført af bl.a. B.B. Broms og Y. Goto, se [65.1] og [71.1], gor det muligt at beskrive den begyndende revnedannelse.

Efterhanden som spandingen σ_{s} øges vil forholdene omkring den primære revne være ret identiske med dem, der kan observeres ved almindelige udtrækningsforsøg, se figur 6.3 .13 a. Disse forsøg viser, at der ved en vis spænding σ_{s} starter en dannelse af en brudfigur, der har form som en kegle. Denne kegle vokser med stigende spænding i lew gemet, indtil der sker egentlig udtrokning.

På figur 6.3 .13 b ses tegninger af brudfladerne både for smá armeringsspændinger og for armeringsspændinger der narmer sig flydespændingen.

Betydningen af slipafstanden l_{o} er vasentlig for en fuld stændig revneteori, da armeringen i dette omrade frit kan defomeres, således at revnevidden bliver forpget og stivheden af legemet reduceres.

Figur 6.3.13a: Keglebrud ved udtrakningsfors φ.

Figur 6.3.13b: Keglebrudflader for smá og store armeringsspandinger.

Et udtryk for denne slipafstand l_{o} omkring den primære revne er angivet af Leonhardt i reference [77.1] og af J. Jokela i reference [86.1]. Begge udtryk er bestemt empirisk. Disse vil i de efterfolgende afsnit blive gennemgået, mens der i afsnit 6.3.6.4 vil blive udledt et nyt udtryk for slipafstanden v.h.a. en plasticitetsteoretisk udledelse.

G.3.6.2 Meonhardts udtryk.

Leonhardt angiver i reference [77.1], at slipafstanden $l_{0} i \operatorname{hojere}$ grad ex afhængig af det spandingsspring $\Delta \sigma_{s}$, der optræder i armeringen under dannelsen af en revne end af selve spændingsværdien.

Udtrykket, der senere vil blive vurderet v.h.a. forsøg, er rent empirisk og angives til :

$$
\begin{equation*}
l_{0}=\frac{\Delta \sigma_{\mathrm{s}}\left[\mathrm{~N} / \mathrm{mm}^{2}\right]}{45} \cdot d \tag{6.81}
\end{equation*}
$$

6.3.6.3 Jokelas udtryk.

Jokela prwsenterer i reference [86.1] et udtryk for l_{o} som funktion af armeringsspændingen σ_{s}, baseret pá fors \varnothing g til:

$$
\begin{equation*}
1_{o}=\left[2+\frac{\sigma_{\mathbf{s}}}{100}\right] \cdot d \tag{6.82}
\end{equation*}
$$

l_{o} er bestemt ved trækforsøg med en enkelt armeringsstang instobt i beton.

6.3.6.4 Plasticitetsteoretisk udledelse.

Ved belastning af et betonlegeme vil der efter dannelsen af den primare revne opstå et forøget tryk på de omkringliggende kamme, der afleverer disse trykkomposanter til betonen som forskydning og udadrettet tryk. Til bestemmelse af slipafstanden I_{0} skal betonens forskydningsbæreevne saledes bestemmes, og dette er forsøgt gjort ved at sam menligne ovenstaiende problem med teorien for forskydningsbæreevnen ved gennemlokning af en armeret betonplade.

Antages det, at betonen kan betragtes som et idealt plastisk materiale, kan gennemlokningsbæxeevnen beregnes ved
njælp af plasticitetsteorien.

Benyttes Coulomb's modificerede brudbetingelse og antages plan tøjningstilstand i radiære snit omkring belastningen, findes dissipationen, som angivet i reference [78.4], til:
$D=u \cdot\left[\frac{1 \omega \sin \alpha_{1}}{2} \cdot f_{C C}+\frac{\sin \alpha_{1}-\sin \varphi_{1}}{1-\sin \varphi_{1}} \cdot f_{c t}\right]$ for $\varphi_{1} \leq \alpha_{1} \leq \frac{\pi}{2} \quad(6.83)$

Da forudsætningen om ideal plasticitet for betonen ikke helt er opfyldt, må der, ligesom for trakstyrken $f_{c t}$, indføres en effektivitetsfaktor $\nu_{c}, d . v . s$. den effektive betontykstyrke betonstyrke:

$$
\begin{equation*}
\mathcal{E}_{\mathrm{CCP}}=\nu_{\mathrm{C}} \cdot \dot{E}_{\mathrm{CC}} \tag{6.84}
\end{equation*}
$$

(6.83) kan, ved omskrivning og indførelse af:

$$
\begin{equation*}
k=1-2 \cdot \frac{\nu_{c} \cdot f_{c c}}{\nu_{t} \cdot f_{c t}} \cdot \frac{\sin \varphi_{1}}{1-\sin \varphi_{1}} \tag{6.85}
\end{equation*}
$$

og

$$
\begin{equation*}
m=1-2 \cdot \frac{\nu_{c} \cdot f_{c c}}{\nu_{t} \cdot f_{c t}} \cdot \frac{1}{1-\sin \varphi_{1}} \tag{6.86}
\end{equation*}
$$

udtrykkes :

$$
\begin{equation*}
D=\frac{1}{2} \cdot u \cdot \nu_{c} \cdot \hat{I}_{c c}\left(k-\pi \cdot \sin \alpha_{1}\right) \tag{6.87}
\end{equation*}
$$

Et betonlegeme efter dannelsen af den forste primære revne, hvor armeringsspændingen saledes er $\sigma_{\text {sr' }}$ betragtes :

Figur 6.3.14: Det revnede betonlegeme med brudfiguren $r(x)$, der danner grundlag for bestemmelsen af slipafstanden l_{0}.

Ved hjxlp af arbejdsligningen fås :
$\mathrm{Pu}=\int \mathrm{DdA}$
(6.88)
hvor dissipationen er givet ved (6.87) og dA for et cirkulært udtrækningslegeme er:
$\mathrm{dA}=2 \pi \mathrm{r} \frac{\mathrm{dx}}{\cos \alpha_{1}}$.
Hermed bliver (6.88) :
$P=\int_{0}^{h} \frac{1}{2}\left(k-m \cdot \sin \alpha_{1}\right) 2 \pi r \frac{d x}{\cos \alpha_{1}}$
Indfores $\tan \alpha=\frac{d r}{d x}=r^{\prime}(x)$ fås:
$P=\pi \nu_{C}{ }^{f} C \mathcal{C} \int\left(x, x^{\prime}\right) d x$
hvor
$F\left(r, r^{\prime}\right)=r\left[k \sqrt{1+\left(r^{\prime}\right)^{2}}-m r^{\prime}\right]$
V.h.a. figur 6.3.14 kan ligevægtsligningen for legemet op-
stilles til:
$\int_{\mathrm{A}_{\mathrm{s}}} \sigma_{\mathrm{s}} \mathrm{d} A_{\mathrm{s}}=\int_{\mathrm{A}_{\tau_{\mathrm{C}}}} \tau(r)-\mathrm{F}\left(r, r^{\prime}\right) \mathrm{dA} \tau_{\tau}$

Beregningerne kan ses i referencerne [78.3], [78.4] og [84.1].

I reference [84.1] er der foretaget en undersøgelse af sammenhængen mellem den dimensionslose storrelse $\tau(r) / \nu_{c} f_{c c}{ }^{\prime}$ hvor $\tau(x)$ er givet ved
$\tau(\mathrm{r})=\frac{\mathrm{P}}{\pi(\mathrm{d}+\mathrm{h}) \mathrm{h}}$
og $\frac{d}{h}$. Størrelsen $\tau(x)$ er den gennemsnitlige forskydningsspænding i afstanden $h / 2$ fra armeringsstangen, der er den spænding, man ofte benytter ved gennemlokningsundersøgelser.

Figur 6.3.15: Forskydningsbæreevnen for forskellige værdier af betonens trækstyrke.

Som det ses af den ovenstående figur har betonens træk-
styrke $\nu_{t}{ }^{f} c t$ en inflydelse pa bæreevnen p af en gennemlokket plade.

Denne afhængighed af den effektive betontrækstyrke viser sig at fá maxkant betydning ved bestemmelse af et udtryk for slipafstanden $1_{0}{ }^{\circ}$

Alt andet lige vil det mest sandsynlige være, at forskydningsbæreevnen ved udtrækning er storre end ved gennemlokningen af betonplader, da dimensionerne af brudzonerne generelt er mindre.

Disse overvejelser forudsætter naturligvis, at der anvendes forkammede armeringsjern.

Hvor der ved gennemlokning af plader for den relative understotningsparameter $D / h=10$ (stor) gælder, at
$T(x)=0,18 \cdot \nu_{\mathrm{c}} \mathrm{f}_{\mathrm{CC}} \quad$ for $\quad \mathrm{f}_{\mathrm{Ct}}=\frac{\mathrm{f}_{\mathrm{CC}}}{16} \quad(6.94)$
(se figux 6.3.5) skal der typisk multipliceres med en faktor $2,0-2,5$ ved overforing af dette udtryk til forskydningsspændingen i ligevægtsligningen (6.92).

Antages for simpelheds skyld, at hele kxaften i armeringen overføres som forskydningsspandinger til betonen, hvilket ikke er rigtigt, da der stadig er en vis spænding i stået i det snit, hvor bruddet sker, fas ligevrgtsligningen
$\sigma_{s} A_{s}=\pi(d+h) h r(r)$

Tndfores vardien (6.94) for $\tau(x)$ fås:
$\sigma_{S} A_{S}=\pi(d+h) h \cdot 0,18 \cdot \nu_{C} f_{C C}$

Pa basis af en rakke forsøg er der i reference [78.3] anm givet et udtryk for effektivitetsfaktoren ν_{c}.

Undersøgelserne viser, at ν_{c} afhrenger af betonstyrken,
idet hoje styrker giver lave ν_{c}-vardier mens lave betonstyrker giver hoje ν_{c} wwrdier.

Når det som i [78.3] antages, at $\nu_{c}{ }^{\prime} s$ afhængighed med $f_{c c}$ kan beskrives ved hjælp af en kvadratrodsfunktion, får man ved anvendelse af mindste kvadraters metode følgende udtryk for ν_{c} :

$$
\nu_{\mathrm{c}}=\frac{4,22}{\sqrt{\mathrm{f}_{\mathrm{CC}}}} \quad\left(\mathrm{f}_{\mathrm{Cc}} \mathrm{i} \mathrm{MPa}\right) \quad(6.97)
$$

Ved omskrivning af (6.96) og indforelse af en faktor på 2,2 på $\tau(r)$ fås:
$h^{2}+d \cdot h-\frac{\sigma_{S} \cdot A_{s}}{2,2 \cdot 0,18 \cdot \pi \cdot 4,22 \cdot \sqrt{\mathbf{f}_{\mathrm{cC}}}}=0$
Indføres

$$
\begin{equation*}
\mathrm{B}=0,1886 \cdot \frac{\sigma_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s}}}{\sqrt{\mathrm{f}_{\mathrm{cC}}}} \tag{6.99}
\end{equation*}
$$

og loses (6.98) moh.t. h fas:

$$
\begin{equation*}
h=\frac{1}{2} \cdot\left[\sqrt{d^{2}+4 \cdot B}-d\right] \tag{6.100}
\end{equation*}
$$

Det således beregnede h vil optræde i det revnede betonlegeme pa begge sider af den primære revne, således at den totale slipafstand l_{0} bliver :

$$
\begin{equation*}
l_{o}=2 \cdot h \tag{6.101}
\end{equation*}
$$

og dermed

$$
\begin{equation*}
l_{0}=\sqrt{d^{2}+4 \cdot B}-d \tag{6.102}
\end{equation*}
$$

hvor B er givet ved (6.99).

På figur 6.3 .16 ses sammenhængen mellem den dimensionsløse storrelse $1_{o} / d$, og sprendingen i armeringen σ_{s} for forskellige betontrykstyrker. Det bemærkes, at sliplængden l_{o} i den stabiliserede revnefase for en armeringsspænding pá σ_{s} $=300-400 \mathrm{PPa}$ bliver ca. 4,5.d.

Det ses, at l_{o} / d kun varierer svagt med betontrykstyrken. En simpel formel der gengiver kurverne i figux 6.3 .16 er

$$
\frac{l_{0}}{\mathrm{~d}}=1+\frac{\sigma_{\mathrm{s}}}{100} \quad\left(\sigma_{\mathrm{s}} \text { i MPa }\right) \quad(6.103)
$$

I afsnit 6.5 .4 er de forskellige slipudtryk vurderet pả basis af eksisterende forsøgsmateriale.

Figur 6.3.16

G.A Revmeafstand oc revnevidde.

6.4.1 Revnearstanden 1 ticm

Revneafstanden for de enkelte omrader vil med udgangspunkt i afsnit 6.3.3-6.3.5 blive bestemt som summen af to bidrag, nemlig transmissionsrevneafstanden $a_{t}\left(\epsilon_{s m}\right)$ og slipafstanden I_{o} d.v.s.

$$
\begin{equation*}
1_{\mathrm{tm}}\left(\epsilon_{\mathrm{sm}}\right)=1_{\mathrm{o}}\left(\sigma_{\mathrm{s}}\right)+\mathrm{a}_{\mathrm{t}}\left(\epsilon_{\mathrm{sm}}\right) \tag{6.104}
\end{equation*}
$$

Formlen indebærer den tilnærmelse, at a_{t} bestemmes som funktion af $\epsilon_{\text {sm }}$ v.h.a. de tidligere udledte udtryk. Der tages altså ikke hensyn til, at slippet influerer på ϵ_{sm}. Da korrektionen p.g.a. slippet normalt er lille, vil fejlen være lille. Hvis σ_{s} er den givne storxelse, er fremgangsmåden korrekt, idet $\epsilon_{s m}$ da blot betyder middeltøjningen over transmissionsafstanden a_{t} 。

For slipafstanden l_{o} anvendes i forste omgang alle de i afsnit 6.3.6 beskrevne udtryk, således at en vurdering senere kan foretages.

Hermed bliver :
I. $I_{0}\left(\sigma_{s}\right)=\frac{\Delta \sigma_{S r}\left[\mathrm{~N} / \mathrm{mm}^{2}\right]}{45} \cdot d$ (Leonhardt) (6.105)
II. $I_{o}\left(\sigma_{S}\right)=\left[2+\frac{\sigma_{S}}{100}\right] \cdot \mathrm{d}$ (Jokola) (6.106)
III. $I_{0}\left(\sigma_{s}\right)=\sqrt{d^{2}+4 \cdot B}-a$ (Plasticitetsteori) (6.107)
hvor der for B anvendes (6.99).

Revnevidden i et vilkaxligt punkt af en revne w(x,y) kan bestemmes som den samlede forlmonelse af legemet over af standen 1 minus forlængelsen af betonlegemet. Den samlede forlangelse af legemet regnes bestemt af middeltojningen $\epsilon_{\text {sm }}$. Vi har da

$$
\begin{equation*}
w(y, z)=\int_{0}^{1}\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{c}}(x, y, z)\right) d x \tag{6.108}
\end{equation*}
$$

Formel (6.108) er den generelle formel for xevnevidden w, der tager hensyn til, at revnevidden varierer med afstan den fra armeringen.

Forsøg fra reference [72.1] viser klart en variation med afstanden fra ammeringen og de vil blive beskrevet i et senere afsnit.

Betonens traktøjning $\epsilon_{C}(x, y, z)$ ses skitseret pas neden stående figur, se tillige figur 6.2 .2 .

Figur 6.4.1: Fordelingen af $\epsilon_{c}(x, y, z)$.

Antages $\epsilon_{C}(x, y, z)$ at vare konstant over det effektive be－ tonareal Acte＇kan et udtryk for middelrevnevidden w_{tm} be－ stemmes，idet $\epsilon_{C}(x, y, z)$ bliver uafhængig af koordinaterne y og z 。
oftest vil man alene være interesseret i middelrevnevidden pà overfladen af en betonkonstruktion．Denne beregnes of test under den forudsætning，at ϵ_{c} negligeres langs ovex－ føringslængderne x_{o} ．Man får da

$$
\begin{equation*}
W=\epsilon_{s m}^{2 x_{o}} \cdot 2 x_{0} \tag{6.109}
\end{equation*}
$$

hvor $\epsilon_{\text {sm }}^{2 x}$ her betyder armeringens middeltojning over strakningen $2 x_{0}$ 。

Same resultat fås ved at regne

$$
\begin{equation*}
w=\epsilon_{s m}^{a_{t}} \cdot a_{t}-\epsilon_{c}\left(a_{t}-2 x_{o}\right) \tag{6.110}
\end{equation*}
$$

hvor $\epsilon_{s m}^{\mathbf{a}_{t}}$ er armeringens middeltojning over hele transmis． sionsafstanden a_{t} 。

Tages hensyn til slippet 1_{o} fas

$$
\begin{equation*}
w_{t m}=\epsilon_{s} \cdot 1_{0}+\epsilon_{s m}^{a_{t}} \cdot a_{t}-\epsilon_{c}\left(a_{t}-2 x_{0}\right) \tag{6.111}
\end{equation*}
$$

I afsnit 6.3 .2 blev axbejdslinien for det revnede legeme gennemgået og denne danner grundlag for bestemmelsen af forlobet af ϵ_{sm} i de enkelte revnefaser．

6.4.3 Rewneafstand on rewnevidde for revnefase I.

Formel (6.104) anvendes sammenholdt med udtrykket for transmissionsrevneafstanden $a_{t}\left(\epsilon_{s m}\right)$ i (6.52 $)$, hvilket giver:

$$
1_{\mathrm{tm}}\left(\epsilon_{\mathrm{sm}}\right)=1_{\mathrm{o}}\left(\sigma_{\mathrm{s}}\right)+\frac{n \cdot d \cdot \epsilon_{\mathrm{ct}}}{4 \lambda\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)}\left[\frac{\mu}{\mathrm{n} \mathrm{\varphi}}\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\mathrm{n} \varphi}-1\right]^{2} \quad(6.112)
$$

Ved bestemmelse af revnevidden i revnefase I, må dex tages hensyn til betonens forlængelse udenfor overforingslængderne x_{0}.

Formel (6.111) bliver i denne fase I (se tillige figur 6.3 .7) :
$w_{t m}=\epsilon_{s} l_{0}+\epsilon_{\mathrm{Sin}} a_{t}\left(\epsilon_{\mathrm{sm}}\right)-\epsilon_{\mathrm{ct}}\left(\mathrm{a}_{\mathrm{t}}\left(\epsilon_{\mathrm{sm}}\right)-2 \cdot \mathrm{x}_{0}\right)$
hvilket kan omskrives til :
$W_{t m}=\epsilon_{s}{ }^{1}{ }_{0}+\left(\epsilon_{s m}-\epsilon_{c t}\right) a_{t}\left(\epsilon_{s m}\right)+2 \epsilon_{c t} X_{o}$

Indsættes for $a_{t}\left(\epsilon_{s m}\right)$ formel (6.38) fås:
$W_{t m}=\epsilon_{s} L_{0}+\frac{\epsilon_{c t}}{n}\left[\frac{\mu}{\varphi}\left(\epsilon_{s m}-\epsilon_{c t}\right)+\frac{1}{\varphi}-n\right] x_{0}+2 \epsilon_{c t} x_{o}$
Omskrivning giver :

$$
W_{t m}=\epsilon_{s} 1_{0}+\epsilon_{c t^{x}}\left[\frac{\mu}{n \varphi}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{ct}}\right)+\frac{1}{n \varphi}+1\right]
$$

Indfores ligning (6.51) for x_{o} bliver (6.115) efter en del udregninger :
$W_{\mathrm{cm}}=\epsilon_{\mathrm{s}} 1_{0}+\frac{\mathrm{n} \epsilon_{\mathrm{ct}}{ }^{\mathrm{d}}}{4 \lambda}\left[\left[\frac{\mu}{\mathrm{n} \varphi}\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\mathrm{n} \varphi}\right]^{2}-1\right] \quad(6.116)$

Formel (6.116) er det endelige udtryk for middelrevnevidden $\mathrm{wtm}_{\mathrm{tm}}$ i revnefase I, altsả for $\epsilon_{s m}$ liggende i intervallet :

$$
\epsilon_{\mathrm{sm}} \in\left[\epsilon_{\mathrm{ct}} ; \epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}\right]
$$

For slipafstanden 1_{0} anvendes udtrykkene (6.105)-(6.107).

6.4.4 Revneafstand or revnevidde for revnefase II.

Formel (6.104) anvendes sammenholdt med udtrykket for transmissionsrevneafstanden $a_{t}\left(\epsilon_{s m}\right)$ i den udviklende revnefase, nemlig formel (6.60), hvilket giver :

$$
I_{\mathrm{tm}}\left(\epsilon_{\mathrm{sm}}\right)=I_{\mathrm{o}}\left(\sigma_{\mathrm{s}}\right)+\frac{\mathrm{nd}}{\lambda}\left[\frac{\mu}{\mathrm{n} \varphi}\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\mathrm{n} \varphi}-\frac{\epsilon_{\mathrm{sm}}}{\epsilon_{\mathrm{ct}}}\right] \quad \text { (6.117) }
$$

Ved bestemmelsen af revnevidden fox denne fase kan formel (6.111) anvendes direkte således at:
$w_{\mathrm{tan}}=\epsilon_{\mathrm{s}} \mathrm{l}_{0}+\epsilon_{\mathrm{sm}} \mathrm{a}_{\mathrm{t}}\left(\epsilon_{\mathrm{sm}}\right)$

Ved indførelse af $a_{t}\left(\epsilon_{s m}\right)$ fra (6.60) fås:

$$
W_{t m}=\epsilon_{\mathrm{s}} \cdot 1_{0}+\epsilon_{\mathrm{sm}} \cdot \frac{n \cdot d}{\lambda}\left[\frac{\mu}{n \varphi} \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{n \varphi}-\frac{\epsilon_{\mathrm{sm}}}{\epsilon_{\mathrm{ct}}}\right](6.119)
$$

Formel (6.119) er det endelige udtryk for middelrevnevidden $w_{t m} i$ revnefase $I I$, altsa for $\epsilon_{s m}$ liggende i intervallet:

$$
\left.\left.\epsilon_{\mathrm{sm}} \in\right] \epsilon_{\operatorname{sm}}^{2 \mathrm{x}_{0}}: \epsilon_{\mathrm{sm}}^{\mathrm{x}_{0}}\right]
$$

For slipafstanden I_{o} anvendes udtrykkene (6.105)-(6.107).
6. A. 5 Revneafstand og revmevidde for mewnerase NTI.

Formel (6.104) sammenholdes med udtrykket for transmissionsrevneafstanden $a_{t} i$ den stabiliserede revnefase, formel (6.75) , hvilket giver :

$$
I_{\operatorname{tm}}\left(\epsilon_{\mathrm{sm}}\right)=I_{\mathrm{o}}\left(\sigma_{\mathrm{s}}\right)+\frac{\mathrm{n} \cdot \alpha}{4 \cdot \lambda} \cdot\left[\frac{\alpha}{\mathrm{n} \varphi}-1\right] \quad(6.120)
$$

Ved bestemmelsen af revnevidden for denne fase anvendes (6.111) samenholdt med (6.75), der giver det endelige udtryk for middelrevnevidden w_{tm} i revnefase III :

$$
w_{\mathrm{tm}}=\epsilon_{\mathrm{s}} \cdot 1_{0}+\epsilon_{\mathrm{sm}} \cdot \frac{\mathrm{n} \cdot \mathrm{~d}}{4 \cdot \lambda} \cdot\left[\frac{\alpha}{\mathrm{n} \varphi}-1\right] \quad \text { (6.121) }
$$

ϵ_{sm} er i denne revnefase III beliggende i intervallet :

$$
\epsilon_{\mathrm{sm}} \in\left[\epsilon_{\mathrm{sm}}^{\mathrm{x}_{0}} ; \infty[\right.
$$

For slipafstanden l_{o} anvendes udtrykkene (6.105)-(6.107).

6.5 Teorien verificeret ved hizit af forspogo

6.5.1 Forseg fra reterence $[76.1$ I.

I forsog udfort af Leonhardt og Rostasy blev der foretaget målinger pá bjelker, der var udsat for temperaturpåvirkninger.

I en kompliceret testanordning, der nærmere er beskrevet i [76.1], blev bjalkerne påvirket mea en temperaturdifference på indtil $\Delta T=-60^{\circ} \mathrm{C}$. Desuden blev der udført normale trækforsøg med bjælkexne.

Der blev foretaget målinger af de tøjninger og de revnevidder, der udviklede sig efter nedkolingen.

For revneviddernes vedkommende blev alle de synlige revner måt og antallet blev noteret, saledes at bestemmelsen af middelrevnevidden $w_{t m}$ kunne foretages.

Til forsøgene blev der anvendt letbetonbjælker, alle med rektangulart tvarsnit, se figur 6.5 .1 .

$x \quad b \quad x$

Figur 6.5.1: Tvarsnit af V-bjælkerne.

Måling $n r$ 。	Længde ændring $\Delta \mathrm{L}$	$\begin{gathered} \text { Tojning } \\ \epsilon_{\mathrm{m}} \end{gathered}$	Antal revner	Revne vidden ${ }^{\mathrm{W}}$ \qquad
-	mm	\%/00	-	mm
0	0	0	-	-
1	0,12	0,03	-	-
2	0,32	0,09	-	-
3	0,41	0,12	-	-
4	-	-	-	-
5	0,64	0,18	3	0,07
6	0,83	0,24	4	0,08
7	1,07	0,31	-	-
8	1,16	0,33	-	-
9	1,34	0,38	8	0,12
10	1,62	0,46	-	-
11	1,72	0,49	-	-
12	1,89	0,54	-	-
13	2,16	0,62	15	0,12
14	2,48	0,71	\sim	-
15	2,75	0,79	-	-
16	3,03	0,86	-	-
17	3,38	0,96	26	0,16

Tabel 6.5.2 : Data for bjælke v3.

Måling nr.	Længde ændring $\Delta \mathrm{L}$	Tøjning ϵ_{m}	Antal revner	$\begin{gathered} \text { Revne } \\ \text { vidden } \\ W_{t m-} \end{gathered}$
\cdots	mm	$0 / 00$	\cdots	mm
0	0	0	\cdots	-
1	0,10	0,03	‥	-
2	0,17	0,05	-	\cdots
3	0,23	0,07	"	\cdots
4	0,33	0,09	-	-
5	0,46	0,13	\cdots	\cdots
6	0,55	0,16	-	-
7	0,68	0,19	1	0,03
8	0,86	0,25	2	0,05
9	1,14	0,33	6	0,03
10	1,21	0,35	-	-
11	1,32	0,38	14	0,06

Tabel 6.5.3: Data for bjælke V4.

Måling nr。	Langde ændring ΔI	Tøjning	Antal revner	Revne vidden ${ }^{\mathrm{w}} \mathrm{t}$
-	mm	\%/00	-	mm
0	0	0	-	-
1	0	0	-	\cdots
2	0,26	0,07	-	-
3	0,36	0,10	-	-
4	0,57	0,16	3	0,101
5	0,60	0,17	-	-
6	0,64	0,18	-	-
7	0,68	0,19	-	-
8	0,73	0,21	3	0,139
9	0,80	0,23	-	-
10	0,87	0,25	-	-
11	1,21	0, 35	6	
20	3,10	0,89	19	0,25
28	5,35	1,53	29	0,27

Tabel 6.5.4: Data for bjælke V5.

6.5.2 Vurdering.

Teoriens udtryk for middelrevnevidden w_{tm} givet ved formeludtrykkene (6.116), (6.119) og (6.121) anvendes sammen med tabel 6.5.1, således at middelrevnevidden for de tre bjælker kan beregnes som funktion af middeltojningen i armeringen ϵ_{sm}.
Der er ikke i forste omgang foretaget et valg mellem de tre slipudtryk for l_{o}, der er præsenteret i afsnit 6.3.6.

Revnevidden er dermed beregnet i tre omgange for henholdsvis Jokelas udtryk (6.105), Leonhardts udtryk (6.106) og ved hjælp af formel (6.107).

Ligeledes er der i denne forste gennemregning af middelw revnevidden angivet forløbet for forskellige værdier af parameteren α, således at denne vil kunne blive vurderet selvstændigt.

Samtlige forsøgsresultater og beregninger ex angivet i reference [88.1].

Resultaterne af beregningerne af middelrevnevidden $w_{t m}$ for bjælke V4 er angivet pa de efterfølgende figurer 6.5.2 6.5.4.

Figur 6.5.2.
$\mathrm{w}_{\mathrm{tm}}(\mathrm{mm})$
BEAM V4.

Figur 6.5.3.

Figur 6.5.4.

Det bemærkes, at forsøgene med $V-\mathrm{bj}$ alkerne blev foretaget i et ret lille tøjningsområde svarende til de tojninger der normalt optrader ved beskedne temperaturpaivirkninger o.lign.

I den begyndende revnefase vokser revnevidden relativt hurtigt med stigende tøjning, hvorefter $\mathrm{w}_{\mathrm{tm}} \mathrm{i}$ den udviklende revnefase stiger mindre og til og med kan begynde at aftage for sma α-værdier.

Denne udvikling fortsætter indtil revnefase III nås, hvor revneafstanden bliver konstant og middelrevnevidden stiger proportionalt med tojningen ϵ_{sm}.

Forklaringen på forlobet af middelrevnevidden i den udvikw lende revnefase kan skyldes det fænomen, at nar en tredie revne dannes mellem to eksisterende revner vil der ske en aflastning af hele det revnede legene, saledes at middel-
revnevidden falder. Dannelsen af den tredie revne "aflaster" sailedes bredden af de eksisterende revner, nå den slár igennem til overfladen. Der henvises til figurerne 6.5 .5 og 6.5 .6 .

Figur 6.5.5: Middelrevnevidden for den tredie revne slár igennem til betonoverfladen.

Figur 6.5.6: Middelrevnevidden efter at den tredie revne er slået igennem til betonoverfladen.

Naturligvis vil summen af alle revnevidderne stadig vokse med stigende tojning.

Pá figurerne er ligeledes de aktuelle målinger af middelw revnevidden optegnet, hvilket bekræfter ovenstående ræsonnement. Det ex klart at intet kan konkluderes udfra fors $\varnothing g$ med en enkelt serie af bjolker. Det ses også, at ikke alle forsøg viser denne aftagende tendens. (jvnf. figur 6.5.7).

Udfra de viste kurver samt kurverne i reference [88.1] skønnes parameteren α at ligge mellem 1,4-1,6 for denne bjælketype.

Endnu skal intet konkluderes angaiende α, der indgår i forsøg som bliver beskrevet senere.

Idet omradet, der primart betragtes her, ex små tøjningsvardier, kan intet med sikkerhed vurderes med hensyn til de enkelte udtryk for slipafstanden l_{o}, da denne afstand kun bidrager med en beskeden størrelse til den samlede revnevidde i dette tøjningsområde.

Kurven vist på fig. 6.5.7 beskriver forlobet af de teoretiske udtryk anvendt på data fra bjælke $V 5$ og med 1_{0} fra (6.102). Her viser teorien stadig tendensen til, at middelrevnevidden $w_{t m} i$ den udviklende revnefase har et næm sten konstant forløb, der også ses at stemme med de aktuelle forsøgsværdier for bjælke v5.

Figur 6.5.7.
6.5 .3 Porspor fra reference [72.1.1.

I fors \varnothing foretaget af Beeby [72.1] blev revnevidden mait pá ca. 2 m lange trakprismer.

Alle trækprismerne havde rektangulært tværsnit med et 20 mn forkammet armeringsjern indlagt i midten, se nedenstáende figur 6.5.8.

Figur 6.5.8: Tværsnit af bjælketype Z.

Der blev udført 6 forsøg i hver forsøgsserie og stålets elasticitetsmodul blev regnet konstant lig med

$$
\begin{equation*}
\mathbf{E}_{\mathbf{S}}=2,1 \cdot 10^{5} \mathrm{MPa} . \tag{6.122}
\end{equation*}
$$

Som tilnæmelse blev der for betonens elasticitetsmodul anvendt værdien

$$
\begin{equation*}
\mathrm{E}_{\mathrm{c}}=20000 \mathrm{MPa} . \tag{6.123}
\end{equation*}
$$

Betonens trykstyrke blev målt på terninger med en side. længde på 150 mm .

Betonens enaksede trækstyrke blev ikke opgivet, men der blev udfort spalteforsøg, således at en omregning til den enaksede trakstyrke kunne finde sted.

Det har kun varet muligt at fremskaffe de forsøgsværdier, der er prosenteret i refexence [72.1], hvilket er en ulempe da disse forspg allerede er behandlet.

Behandlingen i [72.1] er foretaget saledes, at samenhangen mellem tojningerne ϵ_{m} og revnevidden er tilnæmmet med den bedste rette linie. Dette er blevet gjort bade for middelværdien, den maksimale værdi samt for fraktilerne 5\%, 10\% og 20\%。

Under forspgets gang blev revnevidden malt 8 steder i tværsnittet. Målepunkterne ses angivet på figur 6.5.9.

Figur 6.5.9: Tværsnit af bjalketype z med angivelse af málepunkterne.

Ved sammenligningen af forsøgsresultaterne med teorien er det vægtede gennemsnit benyttet for middelværdisammenhængen $w_{t m} / \epsilon_{s m}$ målt i punkterne A, B og C.

Som eksempel angives resultaterne for en bjælkeserie, nemlig 26.

Specimen type z6 (80×130 deformed bars)

location of grid lines

Test	Level A					Level B						Level C			
	mean	max	5\%	10\%	20\%	mean	max	5\%	10\%	20\%	mean	max	5\%	10\%	20\%
1	166	434	358	295	263	133	434	317	264	210	111	320	258	232	195
2	173	453	364	340	289	99	293	244	206	163	152	409	327	306	256
3	162	450	321	280	249	116	302	266	229	184	128	35	266	236	204
4	186	602	387	361	289	105	385	309	208	154	152	438	363	321	280
5	161	444	323	289	257	79	290	192	171	136	139	393	342	298	
6	180	479	373	334	284	02	309	187	164	134	170	472	367	333	275
spean	171	\cdots	354			104	\cdots	253	207	163	142	\cdots	320		

Tabel 6.5.5: $w_{t} / \epsilon_{s m}$ for bjælke $Z 6$.
Beregningen af gennemsnittet $W_{t m} / \epsilon_{s m}$ er saledes:
$\left[\mathrm{w}_{\mathrm{tm}} / \epsilon_{\mathrm{Sm}}\right]_{\mathrm{Z} 6}=\left[\frac{171 \mathrm{~mm}+104 \mathrm{~mm}+142 \mathrm{~mm})}{3}\right]=139 \mathrm{~mm}$.

De relevante materialedata for alle z-bjolkerne er opstillet i tabel 6.5.6.

bjælke	b	h	A_{C}	d	antal	A_{S}	φ	E_{CC}		$W_{\mathrm{tm}}<\epsilon_{\mathrm{sm}}$
-	mmm	mm	mm^{2}	mm	m	mm^{2}	\%	MPa	MPa	mm
Faktor	1	1	10^{4}	1	1	10^{3}	1	1	1	1
Z2	80	80	0,64	20	1	0,314	4,9	51,9	2,5	94,5
Z4	120	120	1,44	20	1	0,314	2,2	47,8	2,4	186,5
Z5	160	160	2,56	20	1	0,314	1,2	50,3	2,5	352,0
Z6	80	130	1,04	20	1	0,314	3,0	49,5	2,5	139,0
Z7	80	180	1,84	20	1	0,314	2,2	51,4	2,5	191,0
29	80	230	1,51	20	1	0,314	1,7	42,7	2,3	216,0

Tabel 6.5.6: Materialedata for z-bjælkerne.

6.5.4 Vurdering.

Resultatet af beregningerne af middelrevnevidden $w_{t m}$ for bjælke 26 ses pá de efterfolgende tre figurer for henholdsvis Jokelas slipudtryk (6.105), Leonhardts (6.106) og den plasticitetsteoretiske væxai (6.107).

Det forløb, som beregningerne af bjælke $Z 6$ viser for de enkelte silpudtryk, galder tilnæmelsesvis for alle $Z-$ bjælkerne.

Alle beregningerne for samtlige $Z-b j a l k e r$ er angivet i rem ference $[88.1]$.

Som nævnt anvendes de behandlede forspgsresultater, idet der fra reference [72.1] ex taget middelværdisammenhængen $W_{t m} / \epsilon_{\text {sm }}$ for bjolkerne. Disse ses opstillet i tabel 6.5.6 og er tillige optegnet pa de enkelte figurer. (Figur $6.5 .10,6.5 .11 \mathrm{og} 6.5 .12)$.

Figur 6.5.10.

Figur 6.5.11.

Figur 6.5.12.

Det skal bemarkes, at mailingerne af revnevidderne generelt startede for en tøjning i legemet, der var større end for de før beskrevne V-bjælker.

I referencen angives ikke eksakt den værdi af tojningen, der optræder i legemet, nå den forste revne dannes.

Dette skyldes, at formålet med de pågældende forsøg var at bestemme et formeludtryk for revnevidden i den fuldt udviklede revnefase, safledes at vardien af tojningen ved begyndende revnedannelse blev skonnet mindre betydningsfuld. Det må dog forventes, at malingerne af revnevidden wh blev begyndt nogenlunde samtidig med at den forste revne blev synlig på betonoverfladen.

Generelt kan det fastslås, at der ikke blev mailt revnevidder for tøjninger liggende under vardien $\epsilon_{\text {sm }}=0,3 \% / 00$.

Dette betyder, at forsogsresultaterne fra [72.1] kun er gyldige til sammenligning med resultaterne fra teoriens revnefase III.

Den aktuelle sammenligning mellem beregningerne foretaget efter teorien sammenholdt med forsøgsresultaterne viser, at overensstemmelsen er god ved anvendelsen af slipudtrykkene fra henholdsvis Leonhardt (formel (6.105)) og formel (6.107).

Muligvis giver teorien en for stor værdi ved de meget høje spandingex, men dette er svart at bedomme p.g.a at det ubehandlede forsøgsmateriale ikke var tilgængeligt.

Udfra figur 6.5 .12 ses det, at hvor beregningerne af middelrevnevidden er foretaget med slipudtrykket fra Jokela [86.1], bliver l_{0} for de store tøjninger ($\epsilon_{\text {sm }}=1,2 \% / 00$ - $2,0 \% / 00$) meget dominerende, hvilket medforer en kraftig stigning af revnevidden i dette interval, som ingen af forsøgsresultaterne for middelrevnevidden indikerer, se figur 6.5.12.

Som det ses af denne figur, og som alle beregningerne med anvendelsen af Jokolas slipudtryk fra reference [86.1] viser, stemmer teoriens forlob bedre, når der for fors \varnothing gsresultaterne anvendes forholdet mellem revnevidden og tojningen givet ved 20% fraktilen, $\left(w_{\mathrm{tm}} / \epsilon_{\mathrm{sm}}\right) 20 \%$.

Denne sammenhæng er ligeledes optegnet på figur 6.5.12.

Der må pa baggrund af den viste forsøgsserie 26 samt af de andre forsøg med denne bjælketype (se reference [88.1]) konkluderes, at Jokolas slipudtryk, formel (6.106), ikke giver en beskrivelse af forløbet af middelrevnevidden som funktion af tøjningen $\epsilon_{\text {sm }}$, der er særlig god.

Jokolas udtryk for sliplangden fra reference [86.1] har som nævnt udtrykket :

$$
\begin{equation*}
I_{0}=\left[2+\frac{\sigma_{s}}{100}\right] \cdot d \tag{6.124}
\end{equation*}
$$

Antages armeringens flydespænding at være $f_{Y}=400 \mathrm{MPa}$ få en sliplængde på $l_{0}=6 \cdot d$, hvilket åbenbart er i overkanten, når middelrevnevidden skal bestemmes. Med en armeringsspænding på 400 MPa vil sliplængden nærmere være $4-5$ d, hvilket Jokola i reference [86.1] også anbefaler, at man anvender i den stabiliserede revnefase.

For λ er der anvendt værdierne 2,0-2,5, hvilket er skønnet rimeligt på baggrund af den type af armeringsjern, der blev anvendt i denne forsøgsrakke.

Parameteren α sættes, som for V-bjælkernes vedkommende, lig med, 1,5-1,6 hvilket ses at give en god overensstemmelse mellem teori og fors \varnothing, når der anvendes slipudtrykket fra enten (6.105) eller (6.107).

For effektivitetsfaktoren ν_{t} ex der i beregningerne anvendt den konstante værdi 0,5 . På grund af manglende forsøgsresultater med varierende betonstyrkex har det ikke været skonnet forsvarligt at foresla et andet udtryk for ν_{t} hvor f.eks. en eventuel afhængighed af betonstyrken beskrives.

Det viser sig, at den gennensnitlige trækspænding ved hvilken revnedannelsen sker, altså betonens effektive trækstyrke, kan variere betydeligt med bl.a. betonens svind, armeringsprocenten og armeringsudformningen. Nogle forsøg synes at vise, at den effektive trækstyrke stiger med armeringsprocenten for samme armeringsudformning, men undersøgelsen af disse forhold er endnu ikke gennemført.

6. 6 Statistisif fordeling ar revneafstander og revmevidden.

ortest ex man ved undersøgelse af betonkonstruktioners revneudvikling mere intereseret i den maksimale revnevidde end i middelrevnevidden.

Da variationskoefficientexne for revneafstande og revnevidder kan antage vardier op til 60% kræver en fuldstæno dig revneteori, at de statistiske fæmomener inddrages.

Den vasentligste ársag til de store variationskoefficien ter er formentlig den statistiske variation af betonens trakstyrke hen over konstruktionen. En fuldstandig teori ma derfor tage sit udgangspunkt i denne fordeling og kombinere denne med den mekaniske teori for revnedannelsen. En sådan teori ex endnu ikke formuleret.

På dette stadium af teoriens udvikling er man derfor henvist til at støtte sig til de udforte laboratorieforsøg.

Bestemmelsen af den maksimale revnevidde ved hjælp af en statistisk undersøgelse kraver, at der er adgang til mange forsøgresultater, således at maksimalværdien enten kan bestemmes som f.eks. 1 \% fraktilen af en serie mailinger.

En af de mest omfattende statistiske underspgelser er gennenfort af Efsen \& Krenchel [59.1]. Til brug for det her rapporterede arbejde har de originale forspgsdata varet stillet til radighed fra forfatterne af [59.1] i den udstrokning, de er bevaret.

På nedenstående figur 6.6 .1 er der vist fordelingen af de måte revmeafstande for en forsøgsserie med ialt 4 prismer.

Figur 6.6.1 : Fordelingen af revneafstanden 1 for en forsøgsserie taget fra reference [59.1].

Der blev for denne serie foretaget ialt 487 målinger af revneafstanden og revnevidden for en armeringsspænding på $\sigma_{s}=200 \mathrm{MPa}$.

Figuren viser at antagelsen om at revneafstanden folger en nomalfordeling ikke kan anvendes.

Resultaterne fra disse mailinger sammenholdt med andre forsøg viser at fordelingen bedre beskrives ved en skæv form deling f.eks. en logaritmisk normalfordeling.

Antages det, at resultaterne folger den lognomale forde.. ling kan de for deme fordeling beskrivende parametre α og β^{2}, beregnes.

De optimale vardier af α og β^{2} på baggrund af forsøgsresultaterne for revneafstanden i reference [59.1] bliver:

$$
\begin{array}{ll}
\alpha=2.08 & (6.125) \\
\beta^{2}=0.4117^{2} & (6.126)
\end{array}
$$

Revneafstandens fordeling kan sailedes udtrykkes ved:

$$
\begin{equation*}
1 \in \log \left(\alpha_{p} \beta^{2}\right)=\log \left(2,08:\left(0,4117^{2}\right)\right) \tag{6.127}
\end{equation*}
$$

Optegningen af denne fordeling ses angivet pa efterfolgende figur 6.6 .2 med de $f x a$ figur 6.6 .1 beregnede værdier indtegnet.

Selvom mange af forsogene viser tegn pa at være lognormalt fordelte er det ikke alle der kan beskrives ved hjælp af denne fordeling, hvorfor en signifikanstest kun kan udføres med mere eller mindre grove tilnærmelser, saledes at en bestemmelse af maksimalværdien for revnevidden, wimax ex vanskelig.

I den statistiske analyse i reference [59.1$]$ er der optegnet de akkumulerede frekvenskurver til bestemmelse af 1\% fraktilen.

Figur 6.6.2 : Logaritmiske normalfordeling.

Resultaterne fra forsogene er indtegnet pa sandsynligheds. papix saledes at kurvens skæring med 99% iraktilen kan benyttes til aflesning af den tilsvarende abscisseværdi, der hex er de malte revnevidder.

Som eksempel ex der i nedenstande figur angivet foxlobet for forsøgene med enakset trak.

Figur 6.6.3 : Den akkumulerede frekvenskurve til bestemmelse af 99 \% fraktilen for revnevidden.

I forsøgsmaterialet blev der for samtlige forgog optegnet sadanne kurver således at en bestemmelse af Eorholdet mellem værdien ved 1 foraktilen og middelværdien kan beregnes.

For det i figur 6.6.3 viste forspgmateriale bliver forholdet, der betegnes k_{v} :

$$
\begin{aligned}
& \sigma_{\mathrm{S}}=200 \mathrm{MPa}: \quad \mathrm{K}_{\mathrm{W}}=\frac{\hat{\mathrm{F}}_{1 \%}}{W_{\mathrm{m}}}=\frac{0,13 \mathrm{~mm}}{0,059 \mathrm{~mm}}=2,2 \quad(6.128) \\
& \sigma_{\mathrm{S}}=300 \mathrm{MPa}: \quad \mathrm{k}_{\mathrm{W}}=\frac{\hat{\mathrm{F}}_{1 \%}}{W_{\mathrm{m}}}=\frac{0,165 \mathrm{~mm}}{0,079 \mathrm{~mm}}=2,1 \quad(6.129) \\
& \sigma_{\mathrm{S}}=400 \mathrm{MPa}: \quad \mathrm{k}_{\mathrm{W}}=\frac{\mathrm{E}_{1 \%}}{W_{\mathrm{m}}}=\frac{0,22 \mathrm{~mm}}{0,106 \mathrm{~mm}}=2,1 \quad(6.130)
\end{aligned}
$$

Dette forhold, der saledes udtrykker den faktor der skal multipliceres pa middelværdien for at fá den maksimale revnevidde, viser sig her og ligeledes i andre forsøg at være uafhængigt af spændingen σ_{s} og kun lidt afhængig af φ således at der som generel faktor til bestemmelsen af den maksimale revnevidde kan anvendes et vagtet gennemsnit af alle de beregnede k_{W}-værdier fra forsøgene i reference [59.1].

Faktoren til bestemmelse af maksimalrevnevidden, bestemt herved, er fundet til:

$$
\begin{equation*}
k_{w}=\frac{f_{1 \%}}{W_{m}}=2,0 \tag{6.131}
\end{equation*}
$$

6.7 Sammenimning med elsisterende teorier for enakset txak.

Indenfor specielt den enaksede revneteori eksisterer der mange formler til beregning af revneafstande og revnevidder.

I afsnit 5 er fire af de mest kendte beskrevet.

Som afslutning på dette afsnit vil der i det folgende blive foretaget en samnenligning mellem den nye teori, form lerne (6.113), (6.116) og (6.118), og de eksisterende teorier givet ved :

Formel 1 : Efsen \& Krenchel (5.14).

Formel 2 : CEB (5.16).

Formel 3 : Leonhardt (5.23).

Formel 4 : Beeby (5.29).

De indgaiende parametre i de enkelte formler ex beskrevet i de respektive afsnit.

Forsøgsbjalkerne, der lagges til grund for sammenligningerne ex med hensyn til materiale og tværsnitsdata be skrevet i afsnit 6.5.3.

Beregningerne vil blive illustrexet ved en enkelt gememregning, nemlig af bjalke $Z 6$.

Formlerne fxa afsnit 5 beskriver kun forlpbet i den sta= biliserende revnefase, hvorfor begyndelsesspendingen er valgt til $\sigma_{\mathrm{s}}=200 \mathrm{MPa}$ 。

For den nye teoris vedkommende er der ved beregningen af bjælke 26 valgt de samme værdier for parametrene α, ν_{t} og λ som blev fundet ved vurderingen i afsnit 6.5.4.

Forlobet af middelrevnevidden for de forskellige udtryk er ret forskelligt. Udtrykket givet af Leonhardt (5.23) giver i almindelighed den storste vardi for given armeringsspænding, mens Beebys udtryk givex de laveste vardier. For den nye teoris vedkommende viser de fleste beregninger et middelrevneviddeforløb, der ligger nogenlunde i midten af samtlige de reprrsenterede kurveforlob.

Bedst overensstemmelse er der mellem den nye teori og C.E.B.'s formel. Dette skyldes antageligt, at begge teorier tagex hensyn til betonens trakstivhed i det revnede stadium.

Grunden til den store afvigelse mellem de enkelte udtryk. skal ses i lyset af, at de eksisterende formler er empirisk bestent og ved de enkelte forsøg, formlerne er baseret på, har der varet lagt vagt pa at beskrive forskellige forhold ved revneudviklingen.

Konklusionen af disse sammenligninger må dog være, at den nye teoris beskrivelse af middelrevneviddeforlobet ikke afviger signifikant fra de eksisterende udtryk.

BJELKE 26.					
Spmeding	Leonhardt	$\begin{gathered} \text { Efsen } \\ \text { \& } \\ \text { Krenchel } \end{gathered}$	Beeby	C.E.B.	Ny teori
σ_{s}	${ }^{\text {H Leon }}$	${ }^{\text {E E Ekr }}$	${ }^{W}$ Bee	${ }^{W}$ CEB	${ }_{W} \mathrm{~T}$
MPa	man	mam	mm	mm	min
200	0,205	0,131	0,096	0,148	0,131
300	0,314	0,187	0,149	0,228	0,225
400	0,421	0,243	0,202	0,306	0,332

Tabel 6.7.1 : Middelrevnevidden $\mathrm{wtm}_{\text {tm }}$ for blke Z 6 beregnet for forskellige teorier.

Figur 6.7.1 : Grafisk fremstilling af resultaterne i tabel 6.7.1.

Den teoretiske model, der er opstillet i afsnit 6 til beregning af middelrevneafstanden og middelrevnevidden, må generelt siges at kunne anvendes til at beskrive forlobet af revneudviklingen i alle faserne.

Det har kun varet muligt i den tilgangelige litteratur at finde en forsøgsxakke, der angiver de revnevidder, der fremkommer i det tidlige revnestadium. Dette bevirker, at de konklusioner, der kan drages udfra beregningerne foretaget på dette stadium, hviler på et spinkelt grundlag.

Overensstemmelsen mellem teoriens beregninger og forsøgsresultaterne fra denne serie viser sig at være gode, og resultaterne er blevet anvendt til at bestemme en forlobig værdi for parameteren α.
α er udfra forsogsresultaterne vurderet til at have en værdi mellem 1,4 og 1,6 for enakset trok (og bøjning, se afsmit 8)。

Omkring en primer revne vil forskydningsspandingerne være sa store, at betonens trakstyrke overskrides sả der dannes et omrade, slippet, hvor der praktisk taget ingen vedhæftning er mellem betonen og armeringen.

Da det er kammene pai armeringen, der bevirker dannelsen af de indre revner, ses udbredelsen af slippet ofte at svare til et helt antal kamlangder f.eks. to-tre "kamlængder" på begge sider af den primære revne d.v.s. svarende til ca. 4 gange armeringsdiameteren i den fuldt udviklede revnefase.

Forsøgene gennemgaet i deme rapport viser, at man far de bedste resultater ved at antage, at slippet kan bestemmes udfra de samme forhold, som man har ved gennemlokning af en armeret betomplade.

Udtrykket for slippet ex for rent trak givet ved formel (6.102). Den udviklede teori ses at stemme godt overens med de aktuelle forspgsvardier ogsa i den fuldt udviklede revnefase.

Nar den nye teori sammenlignes med de eksisterende empiriske fommer, fas et forlob, der i reglen ligger midt i det omxåde, i hvilket de eksisterende formler ligger.

I praksis er man sjaldent intexesseret i middelrevne vidderne men mere interessexet i den maksimale revnevidde. Denne bestemmes her i landet som en 99 fraktil.

Faktoren k_{w} til beregning af den maksimale værdi udfra den beregnede middelrevnevidde kan, uaihængigt af axmexingsspandingen, ansættes til værdien $k_{w}=2,0$.

Beregningerne viser, at den effektive trakstyrke, d.v.s. den gennemsnitlige trakspanding ved hvilken revnedannelsen sker, er meget lav. Ved behandling af forspgene er anvendt en effektivitetsfaktor ν_{t} på 0,5 .

Det mas dog anberales, at disse forhold studeres narmere, da den effektive trækstyrke efter al sandsynlighed afhænger af en række parametre såsom svindets storrelse, armeringsudformningen og armeringsprocenten.

8. 1 Trulledring.

Mange af de overvejelser der blev foretaget i afsnit 6 vil i udstrakt grad kunne benyttes ved bojning. Det antages f.eks. at arbejdslinien for det revnede legeme vil have samme forløb, som blev foreslàet i afsnit 6.3.2.

8.2 Urevnet stadinus.

Ved beskrivelse af revneteorien for ren bojning betragtes et betonlegeme som skitseret nedenfor.

Figux 8.2.1: Betonlegeme belastet til ren bojning.

I det urevnede stadium fås følgende spændinger efter den tekniske elasticitetsteori :

$$
\begin{equation*}
\sigma_{c}(x, z)=\frac{M(x) \cdot z}{I_{t y u}(x)} \tag{8.1}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{s}(x, z)=\frac{n \cdot M(x) \cdot z}{I_{\text {tyu }}(x)} \tag{8.2}
\end{equation*}
$$

hyor $\mathrm{n}=\frac{\mathrm{E}_{\mathrm{S}}}{\mathrm{E}_{\mathrm{c}}}$.

8.3 Revnet stadium.

8.3.1 Tndledming.

Ved revnedannelse i et betonlegeme påvirket til bøjning vil der udvikle sig to forskellige former for revnesystew mer.

I begyndelsen af momentbelastningen af bjælken vil der først dannes revner, der går fra undersiden af bjælken og op til nullinien. Disse revner vil fremefter blive kaldt bøjningsrevner med en revneafstand $I_{b b}\left(\epsilon_{s m}\right)$ og en revnevidde $\mathrm{w}_{\mathrm{bb}}\left(\epsilon_{\mathrm{sm}}\right)$.

Ved en forøgelse af momentbelastningen vil dex ved relativt høje ameringsspandinger optrade revner, der går fra undersiden af bjælken og op til lidt over trækarmeringen. Disse revner vil blive kaldt enaksede bøjningsrevner eller trakrevner eftersom deres egenskaber er analoge med rev. nerne for rent trak. Trakrevnerne har revneafstanden $I_{t b}\left(\epsilon_{\mathrm{sm}}\right)$ og en revnevidde, der benævnes $\mathrm{w}_{\mathrm{tb}}\left(\epsilon_{\mathrm{sm}}\right)$.

8.3 .2 rrakrevner:

Idet trakrevnerne ved bojning kun adskiller sig fra tilfældet enakset trak ved, at tojningerne varierer lineært over trakzonen, kan de same principper anvendes til bestemmelse af transmissionsxevneafstanden a.

I reference [83.1] er der angivet en metode til at tage hensyn til den lineære tojningsfordeling.

Ved at betragte figur 8.3 .1 ses det at der p.g.a. den lineare fordeling af tojningerne vil blive overfort halvt så stor en kxaft i betonen, som der bliver overfort ved rent tralk på det samme areal.

Figur 3.3.1: Lineær tøjnings-spandingsfordeling ved ren loøjning。

I udtrykkene for transmissionsrevneafstanden a i de enkelte revnefaser, der blev angivet i afsnit 6.3 , nemlig formel (6.52), (6.60) og (6.75), skal højresiderne derfor kun være halvt sá store som for tilfaldet enakset trok. Dog må reglen for det effektive betonareal Acte givet ved figur 6.3 .2 stadig overholdes, således at faktoren der skal multipliceres på $a\left(\epsilon_{s m}\right)$ efter reference $[83.1]$ fas af nedenstaiende figur 8.3.2.

Figur 8.3.2: Trekzonen ved bøjning under hensyntagen til regleme for det effektive betonareal Acte。

Faktoren der blive ganget pa a bliver således lidt storre idet afstanden fra armeringsjernet, der ligger tattest på nullinien til oversiden af tojningen, højst må være $7,5 \cdot d$, se figur 8.3.2.

Generelt bliver faktoren efter reference [83.1]:

$$
\begin{equation*}
k_{\epsilon}=\frac{\epsilon_{\mathrm{co}}+\epsilon_{\mathrm{cu}}}{2 \cdot \epsilon_{\mathrm{cu}}} \tag{8.3}
\end{equation*}
$$

Ved anvendelsen af formel (8.3) skal nulliniens placering kendes.

En simplexe fremgangsmãde bestar i at antage, at trakspændingerne ved bojning kan forudsettes koncentreret i et nærmere defineret omrade omkring tyngdepunktet af armeringen, saledes at spændingerne antages at være jævnt fordelt over dette areal, som er uafhrogigt af nulliniens placew ring. Nomalt defineres arealet (skraveret i figur 8.3.3) som det areal omkring ameringen, dex har samme tyngdem punkt som armeringsarealerne.

Nedenstående figur viser det navnte areal, som for en rektangulær bjelke bliver:

$$
\begin{equation*}
A_{c t e}=2 \cdot b \cdot\left(h-h_{e}\right) \tag{8.4}
\end{equation*}
$$

Figur 8.3.3: Beregning af et tilnærmet areal for det effektive betonareal $A_{c t e}$ ved ren bøjning.

I det revnede stadium vil der ved dannelsen af trækrevnerne, som ved enakset træk, finde en spændingsomlejring sted, der ved bøjning kan beregnes som folger.

Spændingen ved revnen er:

$$
\begin{align*}
& \sigma_{\text {ct }}=0 \\
& \sigma_{\mathrm{s}}=\frac{\mathrm{n} \cdot \mathrm{M}(\mathrm{x}) \cdot \mathrm{z}}{\mathrm{I}_{\text {tyr }}(\mathrm{x})}
\end{align*}
$$

Ved dannelsen af revnen optræder der et spændingsspring jvnf. figur 6.3.1, der for bojning kan bestemmes som:

$$
\begin{equation*}
\Delta \sigma_{S I}(x)=\sigma_{S}^{I I}(x)=\sigma_{S}^{I}(x) \tag{8.7}
\end{equation*}
$$

Her angiver I og II, at betonlegemet er henholdsvis i den urevnede tilstand og i den revnede tilstand.

Formel (8.7) kan omskrives til:

$$
\Delta \sigma_{s x}=\frac{n \cdot M_{r}(x) \cdot 2_{i x}}{I_{t y x}(x)}-\frac{n \cdot M_{r}(x) \cdot z_{i u}}{I_{t y u}(x)} \quad(8.8)
$$

For revnemomentet $\mathrm{M}_{\mathrm{L}}(\mathrm{x})$ anvendes:

$$
\begin{equation*}
M_{x}(x)=\frac{\nu_{\mathrm{b}} \cdot \mathrm{I}_{\mathrm{ct}} \cdot \mathrm{I}_{\mathrm{tyu}}}{\mathrm{~h}_{\mathrm{nu}}} \tag{8.9}
\end{equation*}
$$

hvor $\nu_{b}{ }^{f} c t$ er den sákaldte bøjningstrokstyrke, se nærmere herom i afsnit 8.3 .3 . Ved indswttelse i (8.8) fås:

$$
\Delta \sigma_{s r}=n \cdot \frac{\nu_{b} \cdot f_{c t}}{h_{n u} \cdot I_{t y r}} \cdot\left[I_{t_{y u}} \cdot z_{i x}-I_{t y r} \cdot z_{i u}\right] \quad(8.10)
$$

Antages trækspæmingerne i armeringen koncentreret i tyng depunktet af armeringen, kan spændingen i armeringen ved dannelsen af en trokrevne skrives:

$$
\begin{equation*}
\sigma_{\mathrm{sx}}=\frac{\nu_{\mathrm{t}} \cdot \hat{\mathscr{C}}_{\mathrm{ct}}}{\varphi_{\mathrm{b}}} \tag{8.11}
\end{equation*}
$$

hvor φ_{b} er det effektive armeringsforhold ved bojning:

$$
\begin{equation*}
\varphi_{b}=\frac{A_{s}}{A_{c t e}} \tag{8.12}
\end{equation*}
$$

hvor der for Acte anvendes beregningsmaden givet i figur 8.3.3.

Ved bestemmelse af revneafstande og revnevidder for bojningstrakrevnerne anvendes arbejdslinien for det revnede Legeme givet ved figur 6.3 .5 med $\sigma_{\text {sr }}$ bestemt ved formel (8.11).

Det generelle udtryk $\mathfrak{L o x}$ middelrevneaistanden $l_{\text {tbm }}\left(\epsilon_{\text {mm }}\right)$ ex iflg. (6.104):

$$
\begin{equation*}
1_{\mathrm{tbm}}\left(\epsilon_{\mathrm{sm}}\right)=1_{\mathrm{otb}}\left(\sigma_{\mathrm{s}}\right)+a_{\mathrm{tb}}\left(\epsilon_{\mathrm{sm}}\right) \tag{8.13}
\end{equation*}
$$

For slipafstanden $l_{\text {otb }}$ anvendes her kun to af de i afsnit 6.3.6 beskrevne udtryk.

Hermed bliver:
I. $\quad I_{\text {otb }}\left(\sigma_{\mathrm{s}}\right)=\frac{\Delta \sigma_{\mathrm{Sr}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]}{45} \cdot \mathrm{~d} \quad$ (8.14)

For $\Delta \sigma_{s r}$ anvendes udtrykket givet ved formel (8.10).
II. $\quad \operatorname{lotb}\left(\sigma_{s}\right)=\sqrt{d^{2}+4 \cdot B}-d$

For B anvendes udtrykket (6.99).

Det generelle udtryk for middelrevnevidden $W_{t b m}\left(\epsilon_{s m}\right)$ er:

$$
\begin{equation*}
w_{\mathrm{tcbm}}=\epsilon_{\mathrm{s}} \cdot l_{\mathrm{otb}}+\epsilon_{\mathrm{sm}} \cdot a_{\mathrm{t} b}\left(\epsilon_{\mathrm{sm}}\right) \tag{8.16}
\end{equation*}
$$

6.3.2.1 Revmeafstand or revnevidde for revnefase I.

I denne begyndende revnefase kan en formel for $l_{\text {tbm }}\left(\epsilon_{s m}\right)$ findes ved indswttelse af udtrykket for spændingen i armeringen ved revnedannelse $\sigma_{s r}$ givet ved (8.11) i (6.29) suppleret med de overvejelser, der blev foretaget i afsnit 6.3.3:

$$
1_{t b m}\left(\epsilon_{\mathrm{sm}}\right)=I_{\mathrm{otb}}\left(\sigma_{\mathrm{s}}\right)+\frac{n \cdot d \cdot \epsilon_{\mathrm{ct}}}{4 \cdot \lambda \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)} \cdot\left[\frac{\mu}{\mathrm{n} \varphi_{\mathrm{b}}} \cdot\left(\epsilon_{\mathrm{sm}} \epsilon_{\mathrm{ct}}\right)+\frac{1}{n \varphi_{\mathrm{b}}}-1\right]^{2} \text { (8.17) }
$$

Tilsvarende blivex trakrevnernes middelrevnevidde wtbm efter en del udregninger (jvf. afsnit 6.4.2):

$$
w_{t b m}=\epsilon_{s} \cdot 1_{o t b}+\frac{n \cdot \epsilon_{c t} \cdot d}{a_{s} \cdot \lambda} \cdot\left[\left[\frac{\mu}{n \varphi_{b}}\left(\epsilon_{s m}-\epsilon_{c t}\right)+\frac{1}{n \varphi_{b}}\right]^{2}-1\right] \quad(8.18)
$$

Formel (8.18) er det endelige udtryk for middelrevnevidden $W_{\text {tbm }} i$ revnefase I, altså for $\epsilon_{s m}$ liggende i intervallet:

$$
\epsilon_{\mathrm{sm}} \in\left[\epsilon_{\mathrm{ct}} ; \epsilon_{\mathrm{sm}}^{2 \mathbf{x}_{0}}\right]
$$

For slipafstanden $l_{\text {otb }}$ anvendes udtrykkene (8.14) w(8.15).

8.3.2.2 Revneafstand on revnevidde for rewnefase In.

I den udviklende revnefase kan en formel for $l_{\text {tbm }}\left(\epsilon_{s m}\right)$ findes ved indsrttelse af udtrykket for spandingen i arme ringen ved revnedannelse $\sigma_{s r}$ givet ved (8.11) i (6.29) suppleret med de overvejelser, der blev foretaget i afsnit 6.3.4:

$$
\begin{equation*}
I_{t b}\left(\epsilon_{\operatorname{sm}}\right)=l_{o t b}\left(\sigma_{\mathrm{s}}\right)+\frac{\mathrm{n} \cdot \mathrm{~d}}{\lambda}\left[\frac{\mu}{\mathrm{n} \varphi_{\mathrm{b}}} \cdot\left(\epsilon_{\operatorname{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\mathrm{n} \varphi_{\mathrm{b}}}-\frac{\epsilon_{\operatorname{sm}}}{\epsilon_{\mathrm{ct}}}\right] \tag{8.19}
\end{equation*}
$$

Tilsvarende bliver trakrevnernes middelrevnevidde webm (jvf. formel (8.16)):
$w_{t b m}=\epsilon_{s} \cdot l_{o t b}+\epsilon_{s m} \cdot \frac{n \cdot d}{\lambda}\left[\frac{\mu}{n \varphi_{b}}\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{n \varphi_{\mathrm{b}}}-\frac{\epsilon_{\mathrm{sm}}}{\epsilon_{\mathrm{ct}}}\right] \quad$ (8.20)

Formel (8.20) er det endelige udtryk for middelrevnevidden
${ }^{W}$ tbm i revnefase $I I$, altså for $\epsilon_{s m}$ liggende i intervallet:

$$
\left.\left.\epsilon_{\mathrm{sm}} \in\right] \epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}} ; \epsilon_{\mathrm{sm}}^{\mathrm{x}_{0}}\right]
$$

For slipafstanden $l_{\text {otb }}$ anvendes udtrykkene (8.14) (8.15).

8.3.2.3 Revneafstand og revnevidde for revnefase III.

Formel (8.11) anvendes suppleret med bemarkningerne i afsnit 6.3.5 og 6.4.4, hvilket giver:
$I_{\text {tbm }}\left(\epsilon_{\mathrm{sm}}\right)=1_{\mathrm{otb}}\left(\sigma_{\mathrm{s}}\right)+\frac{\mathrm{n} \cdot \mathrm{d}}{4 \cdot \lambda} \cdot\left[\frac{\alpha}{\mathrm{n} \varphi_{\mathrm{b}}}-1\right]$

Således bliver middelrevnevidden whan ine refase III:

$$
\begin{equation*}
w_{\mathrm{tbm}}=\epsilon_{\mathrm{s}} \cdot 1_{\mathrm{otb}}+\epsilon_{\mathrm{sm}} \cdot \frac{\mathrm{n} \cdot \mathrm{~d}}{4 \cdot \lambda} \cdot\left[\frac{\alpha}{\mathrm{n} \varphi_{\mathrm{b}}}-1\right] \tag{8.22}
\end{equation*}
$$

ϵ_{Sm} er i denne revnefase III beliggende i intervallet:

$$
\epsilon_{\mathrm{sm}} \in\left[\epsilon_{\mathrm{sm}}^{x_{0}} ; \infty[\right.
$$

For slipafstanden $]_{\text {otb }}$ anvendes udtrykkene (8.14)-(8.15).
8.3.3 Boimingsrevner.

Til udregning af bøjningsrevnerne betragtes nedenstående figur :

Figur 8.3.4: Bøjningsrevner.

Ligevægt kræver :

$$
\begin{equation*}
M(x)=T \cdot h_{i} \tag{8.23}
\end{equation*}
$$

hvor h_{i} er afstanden mellem tryk og trækresultanten i et revnet tværsnit. T er trakresultanten for armeringen og C er trykresultanten for betonen.

For transmissionslangden x_{o} findes analogt til (6.49) :

$$
\begin{equation*}
\tau_{\mathrm{cm}} \cdot X_{\mathrm{o}} \cdot \Sigma 0=\left(\sigma_{\mathrm{s}}-\mathrm{n} \cdot \nu_{\mathrm{b}} \cdot \mathrm{f}_{\mathrm{ct}}\right) \cdot \mathrm{A}_{\mathrm{s}} \tag{8.24}
\end{equation*}
$$

Der er her set bort fra, at spandingen $\nu_{b} f_{c t}$ findes i kanten og ikke i armeringens tyngdepunkt. Af (8.24) findes :

$$
\begin{equation*}
x_{0}=\frac{\left(\sigma_{S}-n \cdot \nu_{b} \cdot f_{c t}\right) \cdot A_{S}}{\lambda \cdot \nu_{t} \cdot \hat{H}_{c t} \cdot \sum_{0}} \tag{8.25}
\end{equation*}
$$

For σ_{s} anvendes (6.29) med $\sigma_{S r}$ bestemt ved:

$$
\begin{equation*}
\sigma_{s x}=\frac{M_{r}}{h_{i} \cdot A_{s}} \tag{8.26}
\end{equation*}
$$

der kan skxives

$$
\begin{equation*}
\sigma_{s r}=\frac{\nu_{b} \cdot f_{c t} \cdot I_{t y u}}{A_{s} \cdot h_{n u} \cdot h_{i}} \tag{8.27}
\end{equation*}
$$

ν_{b} er effektivitetsfaktoren på betonens trækstyrke ved ren bøjning.

I almindelighed antages, at revnedannelse ved bøjning sker ved en højere kantspanding end $f_{c t}$, den såkaldte bøjningstrakstyrke $f_{c t b}$. En ofte benyttet vardi er:

$$
\begin{equation*}
f_{c t b}=1,7 \cdot f_{c t} \tag{8.28}
\end{equation*}
$$

I denne formel må $f_{c t}$ dog formentlig erstattes med $\nu_{t} f_{c t}$, hvor ν_{t} fra den tidligere behandling er fundet til 0,5 . Herved fås:

$$
\begin{equation*}
\nu_{\mathrm{b}}=1,7 \cdot \nu_{\mathrm{t}} \tag{8.29}
\end{equation*}
$$

således at der som udgangspunkt ved beregningerne anvendes

$$
\begin{equation*}
\nu_{\mathrm{b}}=0,85 \tag{8.30}
\end{equation*}
$$

Ved bestemmelse af revneafstande og revnevidder for bøj-
ningsrevnerne anvendes arbejdslinien for det revnede legew me givet ved figur 6.3 .5 med $\sigma_{\text {sr }}$ som angivet i formel (8.28).

Det generelle udtryk for revneafstanden $l_{b b m}\left(\epsilon_{s m}\right)$ er iflg. (6.104):

$$
l_{\mathrm{bbxn}}\left(\epsilon_{\mathrm{sm}}\right)=1_{\mathrm{obb}}\left(\sigma_{\mathrm{s}}\right)+\mathrm{a}_{\mathrm{bbb}}\left(\epsilon_{\mathrm{sma}}\right) \quad \text { (8.31) }
$$

For slipafstanden $l_{\text {obb }}$ anvendes som for trækrevnerne kun to af de i afsnit 6.3 .6 beskrevne udtryk.
I. $\quad l_{\text {obb }}\left(\sigma_{\mathrm{S}}\right)=\frac{\Delta \sigma_{\mathrm{SK}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]}{45} \cdot \mathrm{~d} \quad$ (8.32)

For $\Delta \sigma_{s r}$ anvendes udtrykket givet ved formel (8.10).
II. $\quad I_{\text {obb }}\left(\sigma_{\mathrm{s}}\right)=\sqrt{\mathrm{d}^{2}+4 \cdot \mathrm{~B}}-\mathrm{d} \quad$ (8.33)

For B anvendes udtrykket (6.99).

Det generelle udtryk for middelrevnevidden $\mathrm{w}_{\mathrm{bbm}}\left(\epsilon_{\mathrm{sm}}\right)$ er iflg. (6.111):

$$
\begin{equation*}
\mathrm{w}_{\mathrm{bbm}}=\epsilon_{\mathrm{s}} \cdot I_{\mathrm{obb}}+\epsilon_{\mathrm{sm}} \cdot a_{\mathrm{bb}}\left(\epsilon_{\mathrm{sm}}\right) \tag{8.34}
\end{equation*}
$$

8.3.3.1 Revnearstand og revnevidde for revnefase I.

I den begyndende revnefase kan et udtryk for $l_{b b m}\left(\epsilon_{\mathrm{sm}}\right)$ findes ved at betragte uatrykket for transmissionsrevneafstanden $a_{b b}\left(\epsilon_{s m}\right)$ i formel (6.35):
$a_{b b}\left(\epsilon_{s m}\right)=\frac{\left(\sigma_{s}-n \cdot \nu_{b} \cdot f_{c t}\right)}{\left(E_{s} \cdot \epsilon_{s m}-n_{b} \cdot \nu_{c t}\right)} \cdot x_{o}$
Her indswttes fox σ_{s} formel (6.29) med $\sigma_{s r}$ fra formel. (8.27) og x_{o} fra (8.25), hvorefter bojningsrevneafstanden $1_{\mathrm{bb}}\left(\epsilon_{\mathrm{Sm}}\right)$ er givet ved (8.31) med anvendelsen af (8.14) eller (8.15) for slipafstanden $1_{\text {obb }}{ }^{\circ}$

Tilsvarende for middelrevnevidden $W_{b b m}\left(\epsilon_{s m}\right)$ anvendes formel (6.113) med indførelse af $\sigma_{\text {sr }}$ og x_{0} som ved bestemmelse af $l_{\text {bbm }}\left(\epsilon_{\mathrm{sm}}\right)$ 。

8.3.3.2 Revneafstand or rewnevidde for revnefase II.

I den udviklende revnefase kan en ligning for $I_{\mathrm{bbm}}\left(\epsilon_{\mathrm{sm}}\right)$ findes ved at betragte udtrykket for transmissionsrevneafstanden $a_{b b}\left(\epsilon_{\mathrm{sm}}\right)$ i formel (6.59) :
$\mathrm{a}_{\mathrm{bb}}\left(\epsilon_{\mathrm{sm}}\right)=\frac{\mathrm{d}}{\tau_{\mathrm{cm}}}\left[\sigma_{\mathrm{s}}-\mathrm{E}_{\mathrm{s}} \cdot \epsilon_{\mathrm{sm}}\right]$
Her indsættes for σ_{s} formel (6.29) med $\sigma_{s r}$ fra formel (8.27), hvorefter middelbojningsrevneafstanden $1_{b b m}\left(\epsilon_{s m}\right)$ er givet ved (8.31) med anvendelsen af (8.14) eller (8.15) for slipafstanden $l_{o b b}{ }^{\circ}$

Tilsvarende for middelrevnevidden $W_{b b m}\left(\epsilon_{\mathrm{sm}}\right)$ anvendes formel (8.34) direkte med indforelse $a f{ }_{a_{b b}}\left(\epsilon_{\mathrm{sm}}\right)$ fra (8.36) og med (8.14) eller (8.15) for slipafstanden $l_{\text {obb }}$.

8.3.3.3 Revneafstand og revnevidde for revnefase III.

I den stabiliserende revnefase udvikles der ikke flere revnex, således at overføringslængden x_{o} antager værdien $\mathrm{a}_{\mathrm{bb}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{\mathrm{K}_{0}}\right)$.
x_{0} beregnes v.h.a. (8.25), hvor dex for $\sigma_{\mathbf{s}}=\alpha \sigma_{s r}$ anvendes folgende udtryk, idet $\sigma_{s r}$ tages fra (8.27):

$$
\begin{equation*}
\sigma_{s}\left(\epsilon_{s m}=\epsilon_{s m}^{x_{o}}\right)=\left[\frac{\alpha \nu_{b} f_{c t^{I}} t_{y u}}{A_{s} \cdot h_{n u} \cdot h_{i}}\right] \tag{8.37}
\end{equation*}
$$

Bojningsrevneafstanden $I_{b b m}$ i denne revnefase III er givet ved (8.31) ned anvendelsen af (8.14) eller (8.15) for slipafstanden $l_{o b b}$.

For middelrevnevidden $\mathrm{w}_{\text {bbm }}\left(\epsilon_{\mathrm{sm}}\right)$ anvendes formel (8.34) direkte med indforelse af $a_{b b}\left(\epsilon_{s m}=\epsilon_{s m}^{x_{0}}\right)=x_{0} \quad$ og med (8.14) eller (8.15) som de respektive udtryk for slipafstanden $1_{\text {obb }}$ 。

8.3. A : Teorien verificeret ved hielpaf forsog.

8.3.4.1 : Forspa fra reference $[63.1]$.

Langt de fleste forsøg vedr. revnedannelse i beton er udfort som bojningsforsøg, da de ex lettest at udføre. En bestemmelse af de enaksede bøjningsrevners middelrevnevidde er bl.a. foretaget i refexence [63.1].

I denne rapport vil 7 forsøgsbjælker (R-bjælkerne) fra denne serie blive gennemregnet og sammenlignet med forsøgene.

Forsøgsbjælkerne, der alle var simpelt understøttede og havde en længde på $L=4,0 \mathrm{~m}$ blev belastet med to enkeltkræfter P pa oversiden af bjælkerne i fjerdedelspunkterne, se figur 8.3.5.

Figux 8.3.5: Skitse af forsøgsbjælke。

Alle forsøgsbjælkerne havde rektangulært tværsnit med dimensioner som angivet pá nedenstående figur.

Figur 8.3.6: Tværsnit af forsøgsbjælker.

Ved bestemmelsen af middelrevnevidden $w_{\text {tbm }}$ er der kun medtaget de revner, som optræder i midterzonen af bjælkerne, hvor momentet er konstant.

Der blev ved forsøgene anvendt forskellig udformning af armeringen, hvilket der ex taget hensyn til i beregningerne ved hjælp af parameteren λ.

I hver hovedserie var bjælkerne ens med undtagelse af armeringsforholdet og betonstyrkerne. Trykstyrken varierede kun indenfor et begranset onråde, hvilket derfor også var tilfældet med trækstyrken, således at der for disse styrker kan anvendes følgende konstante værdiex :

$$
\begin{equation*}
f_{\mathrm{CC}}=40 \mathrm{MPa} . \tag{8.39}
\end{equation*}
$$

og

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ct}}=2.0 \mathrm{MPa} . \tag{8.40}
\end{equation*}
$$

Ved beregningen af betonens effektive trakareal anyendes formel (8.4) fra afsnit 8.3.2.

Forholdet mellem elascicitetsmodulerne n blev i referencen angivet til $\mathrm{n}=15$ 。

De for denne forsogsserie xelevante materiale- og tværsnitsdata er opstillet i nedenstående tabel 8.3.1.

Forsøgsbjælken var armeret med glat armering.
Antal armeringsstænger.

Tabel 8.3.1: Materiale- og tværsnitsdata for R-bjælkerne。

Folgende resultater fra mailingerne af revnevidden wtbm blev opnået som funktion af middelspændingerne $\sigma_{\text {sm }}$ i armeringen.

$\begin{gathered} a_{\operatorname{sm}} \\ \mathrm{MPa} \end{gathered}$	$\mathrm{wbm}_{\mathrm{tb}}$ nun					
	RIA	R17	R22*	R37	R54	R69
0	0	0	0	0	0	0
50	0,020	0	0	0	0	0
100	0,035	0,05	0,120	0,11	0.03	Op, 02
150	0,070	0,06	0,245	0,15	0,08	0,06
200	0,080	0,08	0,311	0,22	0,09	0,08
250	0,090	0,09	0,423	0,29	0,15	0,10
300	0,100	0,10	0,520	0,34	0,19	0,12
350	0,150	0,11	0,990	0,41	0,20	0,15
400	0,190	0,15	-	0,47	0,21	0,25
450	0,210	0,24	-	0,51	-	-
500	0,350	0,31	-	-	-	-

* Forsøgsbjalken var armeret med glat armering.

Tabel 8.3.2: Sammenhæng mellem middelrevnevidden for de enaksede bojningsrevner og middelspændingen $\sigma_{\text {sm }}$.

Måleresultater for bjælke R61 :

σ_{sm}	MPa	0	108	162	216	269	323	377
w_{tbm}	mm	0	0,05	0,09	0,11	0,19	0,21	0,29

Tabel 8.3.3: Sammenhæng mellem middelrevnevidden for de enaksede bojningsrevner og middelspandingeri $\sigma_{\text {sm }}$ for bjælke R61.
3.3.4.2 Vurdering.

Ved beregningerne er teoriens udtryk for middelrevnevidden givet ved formlerne (8.18), (8.20) og (8.22) anvendt, sammenholdt med sliplangden fra (8.14) eller (8.15).
på de to efterfølgende figurer 8.3 .7 og 8.3 .8 er resultatet af teoriens beregninger vist for bjælke R14. Middelrevnevidden er angivet som funktion af middelspændingen $\sigma_{s m}$ i. armeringen.

Forsøgsresultaterne for den pågældende bjalke fra tabel 8.3 .2 ses ligeledes angivet. Det bemærkes, at beregningerne er foretaget for alle tre revnefaser.

Som nævnt i afsnit 8.3.1 dannes de enaksede trækrevner kun ved relative hoje armeringsspandinger, således at ingen revner er at forvente i den begyndende og udviklende revnefase. Kun ved overgangen mellem den udviklende og stabiliserede revnefase, hvor $o_{\mathrm{sm}} \approx 70-100 \mathrm{MPa}$, begynder trækrevnerne at dannes og ved denne spænding er revnevid derne meget små.

For bjælke Rl4 angives der allerede ved $\sigma_{s m}=50 \mathrm{MPa}$ en revnevidde, hvilket dog mistankes at være en bojningsrevne.

Figur 8.3.7.

Figur 8.3.8.

Af tabel 8.3 .2 ses det, at generelt starter dannelsen af trækrevner ved omkring $\sigma_{\text {sm }}=100 \mathrm{MPa}$.

Overensstemmelsen mellem de beregnede værdier og fors $\emptyset \mathrm{g} \boldsymbol{\operatorname { c o s }}$ resultaterne má generelt siges at være god bade ved anvendelsen af udtrykket for sliplængden l_{o} givet ved fommel (8.14) og ved anvendelse af (8.15).

Værdien for α er i alle beregningerne holdt konstant lig med 1,5 .

For ν_{t} anvendes nogenlunde den samme værdi som ved tilfrldet enakset træk, nemlig $\nu_{t}=0,6$, da forholdene ved dannelsen af disse enaksede bojningsrevner er meget lig forholdene ved ren trok.

Formalet med den omfattende forsøgsserie var ikke kun at bestemme revnevidder men ogsa bl.a. at undersøge forskydningsbæreevnen af bjælkerne.

Armeringsjernene, der blev anvendt var af forskellig stal kvalitet og havde forskellig udformning af kammene, der i beregningerne bevirker, at parameteren λ ændres, dog indenfor det interval der ex foreslàt i (6.48).

Beregningerne er ogsà udført for en enkelt serie forsøgsbjwlker med glat armexing. Resultatet ses på figur 8.3.9 med $\lambda=0,9$, der giver den bedste overensstemmelse med forsøgsvardierne.

Parametrene ν_{t} og α er holdt konstant for alle forsøgene med forkammede armeringsstængex. Selvom der ikke kan drages en endelig konklusion udfra en forsøgsserie alene, ma resultaterne siges at være tilfredsstillende.

Selvom begge gennemregninger, både med l_{o} fra (8.14) og (8.15), ex fundet at vare i nogenlunde overensstemmelse med de aktuelle forspgsværdier, má det konkluderes, at generelt er for forsøgsrækken med R-bjælkerne overensstem-
melsen mellem de beregnede revnevidder og forsogsresultaterne bedst ved anvendelsen af sliplængden l_{0} givet ved det plasticitetsteoretiske udtryk (8.15). Især ved de meget høje armeringsspandinger ($\sigma_{\mathrm{sm}} \approx 350-500 \mathrm{MPa}$) , hvor 1_{0} 's bidrag til den samlede revnevidde er markant, beskrives forlobet af revnevidderne som funktion af armerings. spændingen bedst, nå (8.15) anvendes, se figur 8.3.10.

Figur 8.3.9.

Figur 8.3.10.

8.3.4.3 Forspor fra reference $[66.1$).

Til bestemmelse af bøjningsrevnernes middelrevnevidde $W_{b b m}$ blev der i årene 1964 - 66 gennemfort et omfattende forsøgsprogram af Beeby et al., se bl.a. [66.1].

Forsøgene skulle bl.a. klarlægge revneudviklingens afhanm gighed af armeringsudformingen, armeringsforholdet, dæklagstykkelsen og betonstyrkerne.

Af dette forsogsprogram [66.1] er der til verifikation af teorien udvalgt ialt 11 bjælker.

Bjælkerne, der alle var simpelt understottede og havde en længde pa $L=4,5 \mathrm{~m}$, blev belastet med to enkeltkræfter P i undersiden af bjælken.

Figur 8.3.11 : Skitse af forsøgsbjælke.

Alle forsogsbjælkerne havde rektangulart tværsnit, se figur 8.3.12.

Figur 8.3.12: Tværsnit af foxsogsbjælker.

De relevante materiale og tværsnitsdata for de enkelte bjrlker er opstillet i nedenstáende tabel 3.3.4.

bjæ1ke	b	h	d	N							
$n \mathrm{r}$.	mmm	$\underline{m m}$	mm	\cdots	mm^{2}	mmm	mm	mma	mm	mm^{4}	
Faktor	1	1	1	1	10^{3}	10^{9}	1	1	1	10^{8}	1
A1W1	203	384	32,0	2	1,608	1,48	169,3	220,3	278,5	8,85	222,1
A2W1	203	400	22,2	4	1,550	1,66	171,3	238,3	279,1	8,51	220,7
A3W1	203	406	12,7	12	1,520	1,73	172,3	245,3	279,4	7,90	208,2
E1D	203	378	22,2	4	1,550	1,42	171,2	216,3	279,1	8,28	21.5,2
E2D	203	400	22,2	4.	1,550	1,66	171,3	238,3	279,1	8,51	220,7
G1D	203	406	12,7	12	1,520	1,73	172,3	245,3	279,4	8,30	219,6
G2D	203	406	12,7	9	1,140	1,81	187,8	260,8	284,6	7,42	247,9
G3D	203	406	12,7	6	0,760	1,96	208,1	281,2	291,4	6,04	279,5
G4D	203	400	22,2	4	1,550	1,66	171,3	238,3	279.1	8,51	220,7
G5D	203	400	19,1	4	1,150	1.73	187,3	254,3	284,4	7,56	249,7
G6D	203	400	15,9	4	0,794	1,85	206,0	273,0	290,7	6,16	275,5

- Antal armeringsstænger.

Tabel 8.3.4 Materiale og tværsnitsdata for Beeby's bjælker。

Ligesom ved forsøgene med R-bjælkerne fra [63.1] var variationen af betonstyrkerne begranset for de udvalgte bjelker, således at der som reprasentative værdier kan anvendes folgende:

$$
\begin{equation*}
E_{\mathrm{cc}}=40 \mathrm{MPa} . \tag{8.41}
\end{equation*}
$$

og

$$
\begin{equation*}
f_{c t}=2,0 \mathrm{MPa} . \tag{8.42}
\end{equation*}
$$

Ved bestemmelsen af bøjningsrevnernes middelrevnevidder $W_{b b m}$ er der kun medtaget de revner, der optræder i midterzonen, hvor momentet er konstant.

Resultatet af de Eoretagne malinger af revnevidden wom som funktion af ammeringssprndingen σ_{sm} er gengivet i とabel 8.3.5.

$\begin{gathered} O_{\mathrm{sm}} \\ \mathrm{MPa} \end{gathered}$	Wobm mm										
	AIW1	A1W2	A1W3	E1D	E2D	G1D	G2D	G3D	G4D	65D	G6D
0	0	0	0	0	0	0	0	0	0	0	0
34	0,010	0,013	0,011	0,012	0,020	0,010	0,017	0,012	0,02	0,018	0,017
90	0,038	0,038	0,030	0,03	0,044	0,037	0.038	0,060	0,05	0,055	0,047
158	0,060	0,064	0,050	0,046	0,071	0,055	0,062	0,100	0,13	0,090	0,070
214	0,076	0,086	0,070	0,067	0,095	0,078	0,069	0,120	0,19	0,120	0,107
276	0,011	0,110	0,090	0,080	0,110	0,090	0,079	0,140	0,24	0,170	0,130
345	0,140	0,143	0,110	0,096	0,130	0,100	0,094	0,170	0,26	0,180	0,170
413	0,170	-	-	-	0,160	0,120	0,110	0,200	0,38	0,190	0,200

Tabel $8.3 .5:$ Sammenhæng mellem spandingen i armeringen σ_{gm} og middelrevnevidden wb_{b} 。

8.3.4.4. Vurdering.

Ved beregningerne er benyttet de udtryk for middelxevne vidden, der ex beskrevet i afsnittene 8.3.3.1. 8.3.3.2 og 8.3.3.3. For siplwngden $l_{\text {obb }}$ ex (8.32) og (8.33) anm vendt.

Dannelsen af bøjningsrevnemne sker ved telativt lave armeringsspandinger.

Revneme vil sla igennem til betonovereladen og ga helt op til nullinien som beskrevet i afsnit 8.3 .1.

Pá de to efterfolgende figurer 3.3 .13 og 8.3 .14 er resultatet af beregningerne vist for bjwlke A2W1. Middelrevnevidden er angivet som funktion af middelsprndingen $\sigma_{\text {sm }}$ i ammexingen.

I tabel 8.3 .5 er forsogsresultaterne angivet, og det bemorkes, at de første revner allerede dannes ved en armeringsspanding på $\sigma_{s m} \approx 40 \mathrm{MPa}$.

Overensstemmelsen mellem de beregnede vardier og forsøgs resultaterne má genexelt siges at være god bade ved anvendelsen af udtrykket for sliplængden I_{o} givet ved formel (8.32) og ved anvendelse af (8.33).

Som det var tilfældet ved de enaksede bojningsrevner bem skriver teorien forlobet af middelrevnevidderne bedst ved anvendelsen af $l_{\text {obb }}$ fra (8.33), navnlig ved de hoje armeringssprendinger.

Vardien for α er i alle beregningerne holdt konstant lig med 1,5.

For ν_{b} anvendes vardien $\nu_{b}=0,85$, idet der som beskrevet tidligere, tages hensyn til, at betonens trakstyrke ved bøjning er storre end ved enakset trok.

Kamhojden for de armeringsjern, der blev anvendt for den pågaldende bjælke (A2Wl) havde en beskeden størrelse, hvorfor parameteren λ har en relativt lav vardi, nemlig λ $=1,8$. Parameteren λ er ikke afhangig af belastningstypen, d.V.s. om belastnigen giver rent trok eller bojning, sålem des at variationen kun er et udtryk for forskelle i form kamningen.

Figur 8.3.13.

Konklusioner vedrowende revneteorien for bøjning kan, pa grund af begrænsningerne i de tilgængelige forsøgsresultater, kun drages for den stabiliserede revnefase.

Alle resultaterne viser den same tendens, nemlig at anvendelsen af udtrykket for sliplængden givet ved den plasticitetsteoretiske udledelse giver den bedste beskrivelse. Dette er mest markant ved de høje armeringsspændinger.

Beregningerne af bøjningsrevnernes vidde viser, at parameteren α kan regnes at have den konstante værdi 1,5 .

Det skal bemærkes, at der ikke er blevet foretaget en undersøgelse af revneviddevariationen for høje bjælker ($h \geq$ 500 mm). Her befinder den maksimale revnevidde sig ofte i midterzonen af bjælken og ikke i undersiden, med mindre der anbringes en revnefordelende armering op igennem trækzonen.

Det fremgar af det foregaiende, at den opstillede teori stemmer godt med forsøgsresultater, både for små tøjninger, som man ofte har ved svindm og temperaturpavirkninm ger, og ved storre tøjninger.

Spredningen på revnevidder og på revneafstande ex stor, men i denne rapport er det vist, at pá middelrevnevidden og middelrevneafstanden, er spredningen ikke storre, end den er pa andre størrelser inden for betonstyrkelaren. Overensstemmelsen mellem teori og forspg er lige sa god som man er vant til fra andre omrader.

Teoriens forskellige parametre bor dog fastlægges nojere ved nye forsøg.

Såedes vil det være onskeligt om parameteren λ, der tager hensyn til kamudformningen, kan beskrives noget nøjere som funktion af f.eks. kamhojde, kamafstand o.s.v.

Ligeledes vil det vare onskeligt, om parametrene ν_{t} og ν_{b} kan bestemmes nøjere som funktion af svindspændinger, armeringsudforming m.v.

De fommler, der er blevet udledt i de foreganende afsnit, vil i dette afsnit kort blive sammenfattet med det formal at lette anvendelserne.

11. 1 Arbejdslinien for det revmede legeme.

For det revnede armerede betonlegeme anbefales at benytte følgende udtryk for sammenhængen mellem spandinger og tøjninger:
$\sigma_{s}=\sigma_{s x}\left[\mu\left(\epsilon_{s m}-\epsilon_{c t}\right)+1\right]$
$\operatorname{der} g æ l d e r$ for $\epsilon_{s m} \in\left[\epsilon_{c t} ; \epsilon_{s}^{X_{0}}\right]$ og for $\sigma_{S} \in\left[\sigma_{s,} ; \alpha \cdot \sigma_{S r}\right]$. For $\mu_{\text {, }}$ der tager hensyn til trakstivheden af legemet benyttes
$\mu=\frac{(\alpha-1)}{\left(\epsilon_{\mathrm{sm}}^{\mathrm{X}_{0}}-\epsilon_{\mathrm{ct}}\right)}$

For $\epsilon_{c t}$ anvendes: $\epsilon_{c t}=\frac{\nu_{t} f_{c t}}{E_{c}}=\frac{n \nu_{t} f_{c t}}{E_{s}}$ med $\nu_{t}=0,5$.
α sættes lig med 1,5 mens der for $\epsilon_{S m}^{X_{0}}$ anvendes udtrykket
$\epsilon_{s m}^{x_{0}}=\frac{\nu_{t}{ }^{f} c t}{4 \cdot E_{s}}\left[\frac{3 \cdot \alpha}{\varphi}+n\right]$

Spandingen i armeringen ved revnedannelse $\sigma_{s r}$ afhænger af belastningssituationen.

For en trækstang er
$\sigma_{\mathrm{SI}}=\frac{\nu_{t^{\mathrm{F}} \mathrm{ct}}}{\varphi}$

I intervallet $\left.\epsilon_{\mathrm{sm}} \in\right] \epsilon_{\mathrm{s}}^{\mathrm{X}_{0}} ; \infty\left[\operatorname{og} \sigma_{\mathrm{s}} \in\right] \alpha \sigma_{\mathrm{sr}} ; \infty[$ haves folgende udtryk for arbejdslinien :
$\sigma_{\mathrm{s}}=\epsilon_{\mathrm{sm}_{\mathrm{s}}}+\frac{\tau_{\mathrm{cm}}{ }^{\circ} \mathrm{x}_{\mathrm{o}}}{\mathrm{d}}$
hvor d er ameringsdiameteren og

$$
\begin{equation*}
\tau_{\mathrm{cm}}=\lambda \mathrm{f}_{\mathrm{ct}} \tag{11.7}
\end{equation*}
$$

For λ kan benyttes vaxdien $\lambda=1,8-2,5$ for forkammet armering og $\lambda=0,8-1,3$ for glat amering. Ved anvendelse af danske armeringsstål f.eks. Ks 410, Ks 550 eller tentorstå anbefales det, at benytte værdien $\lambda=2,0$, mens der ved anvendelse af glat amering f.eks. Fe360-DS /ISO 630 (St. 37-DTN 17100) benyttes vardien $\lambda=0,9$ 。

Storrelsen x_{o} der \mathbf{i} dette interval er konstant kan beregnes af

$$
\begin{equation*}
\mathrm{x}_{\mathrm{o}}=\frac{\mathrm{nd}}{4 \lambda}\left[\frac{\alpha}{\mathrm{n} \varphi}-1\right] \tag{11.8}
\end{equation*}
$$

11. 2 Revneafstand or revnevidde for enakset trak.

Udtrykkene for revneafstande og revnevidder opdeles itre faser.

$$
I_{\mathrm{trn}}\left(\epsilon_{\mathrm{sm}}\right)=1_{0}\left(\sigma_{\mathrm{s}}\right)+\frac{d \cdot \epsilon_{\mathrm{ct}}}{4 \cdot \lambda \cdot \mathrm{n} \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)}\left[\frac{\mu}{\varphi}\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}-\mathrm{n}\right]^{2} \quad(11.9)
$$

$\epsilon_{c t}$ fios af formel (11.3) mens $\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}$ ex givet ved:

$$
\begin{equation*}
\epsilon_{\mathrm{sm}}^{2 X_{0}}=\frac{\varphi \cdot \epsilon_{\mathrm{ct}}}{2 \cdot \mathrm{n} \cdot \varphi-\mu \cdot \epsilon_{\mathrm{ct}}}\left[\frac{1}{\varphi}+\mathrm{n}-\frac{\mu \cdot \epsilon_{\mathrm{ct}}}{\varphi}\right] \tag{11.10}
\end{equation*}
$$

Revneafstand for revnefase $I I$: $\left.\epsilon_{s m} \in 7 \epsilon_{3 m}^{2 x_{0}} ; \epsilon_{s m}^{x_{0}}\right]$
$1_{\mathrm{tm}}\left(\epsilon_{\mathrm{sm}}\right)=1_{o}\left(\sigma_{\mathrm{s}}\right)+\frac{d}{\lambda}\left[\frac{\mu}{\varphi}\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}-\frac{\mathrm{n} \cdot \epsilon_{\mathrm{sm}}}{\epsilon_{\mathrm{ct}}}\right]$
$\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}$ fås af (11.10) og $\epsilon_{\mathrm{smil}}^{\mathrm{X}_{0}}$ er givet ved formel (11.4).

Revncafstand for revnefose III: $\left.\epsilon_{\text {sna }} \in\right] \epsilon_{3 n}^{x_{0}} ; \infty[$
$I_{\mathrm{tm}}\left(\epsilon_{\mathrm{sm}}\right)=I_{o}\left(\sigma_{\mathrm{s}}\right)+\frac{\mathrm{d}}{4 \cdot \lambda}\left[\frac{\alpha}{\varphi}-\mathrm{n}\right]$
hvor $\epsilon_{\mathrm{Sm}}^{\mathrm{X}_{0}}$ er givet ved formel (11.4).

Revnevadde for revnefose $I: \epsilon_{s \text { ma }} \in\left[\epsilon_{c t} ; \epsilon_{s m}^{2 x_{0}}\right]$
$w_{\mathrm{tm}}\left(\epsilon_{\mathrm{sm}}\right)=\epsilon_{\mathrm{s}} \cdot 1_{0}\left(\sigma_{\mathrm{s}}\right)+\frac{\epsilon_{\mathrm{ct}} \cdot d}{4 \cdot \lambda \cdot \mathrm{n}}\left[\left[\frac{\mu}{\varphi} \cdot\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}\right]^{2}-\mathrm{n}^{2}\right](11.13)$
hvor $\epsilon_{c t}$ er givet ved (11.3) og $\epsilon_{s m}^{2 x_{0}}$ fås af (11.10).

Hevnevidide for revsefase III: $\left.\left.\epsilon_{3 \pi} \in\right] \epsilon_{s n}^{2 x_{0}} ; \epsilon_{s m}^{x_{0}}\right]$

$$
\begin{equation*}
\mathrm{w}_{\mathrm{tm}}=\epsilon_{\mathrm{s}} \cdot l_{\mathrm{o}}+\epsilon_{\mathrm{sm}} \cdot \frac{\mathrm{~d}}{\lambda}\left[\frac{\mu}{\varphi}\left(\epsilon_{\mathrm{sm}}-\epsilon_{\mathrm{ct}}\right)+\frac{1}{\varphi}-\frac{\mathrm{n} \cdot \epsilon_{\mathrm{sm}}}{\epsilon_{\mathrm{ct}}}\right] \tag{11.14}
\end{equation*}
$$

$\epsilon_{\mathrm{sm}}^{2 \mathrm{x}_{0}}$ fås af (11.10) mens $\epsilon_{\mathrm{sm}}^{\mathrm{X}_{0}}$ er givet ved formel (11.4).

Mevnevidde for revnefase $\left.\operatorname{III}: \epsilon_{\text {sma }} \in\right] \epsilon_{\text {sm }}^{x_{0}}: \infty[$
$\mathrm{w}_{\mathrm{tm}}=\epsilon_{\mathrm{s}} \cdot l_{0}+\epsilon_{\mathrm{sm}} \cdot \frac{\mathrm{d}}{4 \cdot \lambda}\left[\frac{\alpha}{\varphi}-\mathrm{n}\right]$
$\epsilon_{s m}^{x_{0}}$ er givet ved formel (11.4).

Ovenstående formler giver revneafstande og revnevidder som funktion af middelt ϕ jningen ϵ_{sm}. Hvis spmndingen i revnen σ_{s} er givet, kan man beregne $\epsilon_{s m}$ af (11.1) for σ_{s} intervallet $\sigma_{\mathrm{S}} \in\left[\sigma_{\mathrm{SX}} ; \alpha \sigma_{\mathrm{sK}}\right]$ og af (11.6) for $\sigma_{\mathrm{S}}>\alpha \sigma_{\mathrm{sY}}$.

Det anbefales at anvende følgende udtryk for slipafstanden $1_{0}\left(\sigma_{s}\right):$
$I_{0}\left(\sigma_{\mathrm{s}}\right)=\left[1+\sigma_{\mathrm{s}} / 100\right] \mathrm{d}$
hvor σ_{s} indsættes i MPa.

11.3 Revmeatstand og rewnevidde for ren boining.

Ved revnedannelse i et betonlegene pavirket til bojning vil der udvikle sig to forskellige former for revnesystemer.

I begyndelsen af momentbelastningen af bjælken vil der dannes revner, der går fra undersiden af bjælken og op til nullinien. Disse revner kaldes bøjningsrevner med en revneafstand $l_{\mathrm{bb}}\left(\epsilon_{\mathrm{sm}}\right)$ og en revnevidde $\mathrm{w}_{\mathrm{bb}}\left(\epsilon_{\mathrm{sm}}\right)$ 。

Ved en forøgelse af momentbelastningen vil der ved relativt hoje ameringsspandinger optræde revner, der gair fra undersiden af bjalken og op til lidt over trakarmeringen. Disse revnex kaldes enaksede bøjningsrevner eller trækreva ner eftersom deres egenskaber er analoge med revnerne for rent trak. Trakrevnerne har revneafstanden $I_{t b}\left(\epsilon_{\mathrm{sm}}\right)$ og en revnevidde, der benævnes $w_{t b}\left(\epsilon_{\mathrm{sm}}\right)$.

11.3.1 Rewneafstand og rewnewidde for enaksede boinings reyner.

Formlerne for revneafstande og revnevidder for de enaksede bøjningsrevner er identiske med formlerne for tilfaldet
rent træk, saledes at de anbefalede vardier for de indgám ende størrelser er de samme. Dog erstattes armeringsforholdet φ med det effektive armeringsforhold ved bøjning φ_{b} givet ved

$$
\begin{equation*}
\varphi_{b}=\frac{A_{S}}{A_{c t e}}=\frac{A_{S}}{2 \cdot b \cdot\left(h-h_{e}\right)} \tag{11.17}
\end{equation*}
$$

12.3.2 Revmeafstand og revreviade for boiningsremer.

Det generelle udtryk for revneafstanden $I_{b b m}\left(\epsilon_{s m}\right)$ er:
$1_{\mathrm{bbm}}\left(\epsilon_{\mathrm{sm}}\right)=1_{\mathrm{obb}}\left(\sigma_{\mathrm{s}}\right)+\mathrm{a}_{\mathrm{bb}}\left(\epsilon_{\mathrm{sm}}\right)$

Revneafstanal for revnefose $\bar{H}: \epsilon_{s m} \in\left[\epsilon_{c t} ; \epsilon_{S n}^{2 x_{0}}\right]$

Transmissionsrevneafstanden $a_{b b}\left(\epsilon_{\text {sm }}\right)$ er givet ved:
$a_{b b}\left(\epsilon_{s m}\right)=\frac{\left(\sigma_{s}-n \cdot \nu_{b} \cdot f_{c t}\right)^{2} A_{s}}{\left(E_{s} \cdot \epsilon_{s m}-n \cdot \nu_{b} \cdot f_{c t}\right) \lambda \nu_{t} f_{c t}}$

Revncofstand for remsefase $\left.\left.I T: \quad \epsilon_{s m} \in\right] \epsilon_{s m}^{2 x_{0}} ; \epsilon_{s m}^{x_{0}}\right]$

Transmissionsxevneafstanden $a_{b b}\left(\epsilon_{5 m}\right)$ er givet ved :
$\mathrm{a}_{\mathrm{bb}}\left(\epsilon_{\mathrm{Sm}}\right)=\frac{\mathrm{d}}{\tau_{\mathrm{Cm}}}\left[\sigma_{\mathrm{s}}-\mathrm{E}_{\mathrm{s}} \cdot \epsilon_{\mathrm{Sm}}\right]$

Ved bestemmelse af reveneafstande i omradet $\left.\epsilon_{s m} \epsilon_{\left[\epsilon_{c t} ; \epsilon_{s m}^{x_{0}}\right]}\right]$ (revnefase I og II) anvendes udtrykket for σ_{s} givet ved (11.1) hvor der for $\sigma_{\text {sr }}$ benyttes :
$\sigma_{s r}=\frac{\nu_{b} \cdot f_{c t} \cdot I_{t y u}}{A_{s} \cdot h_{n u} \cdot h_{i}}$
ν_{b} er effektivitetsfaktoren på betonens trækstyrke ved ren bojning, der sattes til $\nu_{b}=0,85$.

Meverfistand for revnefase $\left.I I I: \epsilon_{\text {sn }}\right] \epsilon_{\text {sm }}^{x_{0} ; \infty} ; \infty$
I revnefase udvikles dex ikke flere revner sailedes at $a_{b b}\left(\epsilon_{s m}=\epsilon_{s m}^{X_{0}}\right)$ bliver identisk med overforingslængden $x_{0}{ }^{\circ}$ *o beregnes v.h.a. nedenstáende formel
$a_{\mathrm{bbb}}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{\mathrm{x}_{0}}\right)=\mathrm{x}_{\mathrm{o}}=\frac{\left(\sigma_{\mathrm{s}}-\mathrm{n} \cdot \nu_{\mathrm{b}} \cdot \mathrm{f}_{\mathrm{ct}}\right) \cdot \mathrm{A}_{\mathrm{s}}}{\lambda \cdot \nu_{t} \cdot \mathrm{f}_{\mathrm{ct}} \cdot \Sigma \mathrm{Lo}}$
hvor dex for σ_{s} anvendes folgende udtryk:
$\sigma_{s}\left(\epsilon_{\mathrm{sm}}=\epsilon_{\mathrm{sm}}^{\mathrm{x}_{\mathrm{o}}}\right)=\left[\frac{\alpha \nu_{b} \mathrm{f}_{c t^{I}} \mathrm{tyu}}{\mathrm{A}_{\mathrm{s}} \cdot \mathrm{h}_{\mathrm{nu}} \cdot \mathrm{h}_{\mathrm{i}}}\right]$
Revncusdde for revnefose $T, I I$ og $M I$:

Det generelle udtryk for revnevidden $w_{b b m}\left(\epsilon_{\mathrm{sm}}\right)$ er:
$\omega_{\mathrm{bbm}}\left(\epsilon_{\mathrm{sm}}\right)=\epsilon_{\mathrm{s}} \mathrm{I}_{\mathrm{obb}}\left(\sigma_{\mathrm{s}}\right)+\epsilon_{\mathrm{sm}} \mathrm{a}_{\mathrm{bb}}\left(\epsilon_{\mathrm{sm}}\right)$

Til bestemmelse af revnevidden for konstruktioner paivirket til ren bøjning kan udtrykkene for transmissionsrevneafstanden $a_{b b}\left(\epsilon_{\mathrm{sm}}\right)$, formel (11.19), (11.20) og (11.22) for hhv. revnefase I, II og III anvendes i tilknytning til formel (11.24).

Det anbefales at anvende følgende udtryk for slipafstanden $1_{\text {obb }}\left(\sigma_{s}\right):$

$$
\begin{equation*}
1_{\mathrm{obb}}\left(\sigma_{\mathrm{s}}\right)=\left[1+\sigma_{\mathrm{s}} / 100\right] \mathrm{d} \tag{11.25}
\end{equation*}
$$

hvor σ_{s} indsattes i MPa.

For λ, anvendes same værdier som angivet i tilknytning til formel (11.7)

LYYTERATURTHSTR。
[31.1] E. Suensoy:
Jærnbeton.
København 1931.

[48.1] A. efsen:

Elementar Jernbeton.
Jul. Gjellerups Forlag.
København 1948.
[59.1] A. Espen and H. Krenchel:
Tensile Cracks in Reinforced Concrete.
Laboratoriet for Bygningsteknik, DtH. Meddelelse nr.9. København 1959.

[62.1] $]$. Leonhardt und R. Walther:

Versuche an Plattenbalken mit hoher Schubbeanspruchung。 DAfstb., H. 152, Berlin, W. Ernst und Sohn, 1962.
[63.1] H. Rusch und G. Rehm:
Versuche mit Betonformstahlen.
DAfstb., H. 140, Berlin, W. Ernst und Sohn, 1963.
$[63.2]$ H. Rusch und G. Rehm:
Versuche mit Betonformstahlen. (Teil II)
DAfstb., H. 160, Berlin, W. Ernst und Sohn, 1963.
[64-1] Re Rusch und G. Rehm:
Versuche mit Betonformstahlen. (Teil III)
DAfstb. H. 165, Berlin, W. Ernst und Sohn, 1964.
[65.1 1 B. R BROMS:
Technique for Investigation of Internal Cracks in reinforced Concrete Members. ACI Journal, Proceedings V.62, no. 1, Jan. 1965, pp. $35-44$.

A Investigation of Crack Control Characteristics of Various Types of Bars in Reinforced Concrete Beams. Cement and Concrete Association, Research Report 18. Part 1 \& 2, Dec. 1966.
[69.1] Ho Palkner:
Zur Frage der Rissbildung durch Eigen und Zwangspannungen infolge Temperatur in Stahlbetonbauteilen. DAfstb. H. 208, Berlin, W. Ernst und Sohn, 1969.
[70.1] A. W. Beeby:
An Investigation of Cracking in Slabs Spanning one Way. Cement and Concrete Association, Technical Report TRA. 433, April 1970.
$[71,1] \quad \mathrm{y}$. Goto:
Cracks Formed in Concrete Around Deformed Tension Bars.
Journal of the American Concrete
Institute, Proceedings Vol. 68, no. 4,
April 1971. pp. $244-251$.
[71.2] A.W. Beeby:
An Investigation of Cracking on the Side Faces of beams.
Cement and Concrete Association,
Technical Report TRA. 42.466, Dec. 1971.
[72.1] A.W. Beeby:
A study af Cracking in Reinforced Concrete Members Subjected to pure Tension.
Cement and Concrete Association ,
Technical Report TRA. 42.468 , June 1972.
[76.I] F. S. Rostasy. \mathbb{R}. Koch und P. Leonhardt:
Zur Mindestbewehrung von Aussenwanden aus Stahlleichtbeton.
DAfstb. H. 267, Berlin, W. Ernst und
Sohn, 1976.

```
[76.2] Mo Wo Brastmap. N. P. Nielsen. B. C. Jensen
```

Axisymmetric Punching of Plain And Reinforced Concrete.
Afdelingen for Bærende Konstruktioner, DtH, Rapport nr. R.76. 1976.

[77.1] F. Leomhaxat:

Crack Control in Concrete structures.
IABSE Surveys $S-4 / 77$,
IABSE Periodica 3/77, August 1977.
[78.1] F. Leonhardt:
Vorlesungen uber Massivbau, del 4 , 2.udg. Springer - Verlag. Berlin 1978.
[78.2] H. A. clarck and D. 期 Speirs:
Tension stiffening in Reinforced concrete Beams and Slabs Under Short-Term Load. Cement and Concrete Association, Technical Report TRA. 42.521, July 1978.

Gennemlokning af Jexnbetonplader. Afdelingen for Bærende Konstruktioner, DtH, Rapport nr. R.90. 1978.
$[78.4]$ N. W. Brastrup. R. P. Wielsen. B. C. Jensen,
U. Hess and F. Bach :
Concrete Plasticity. Specialpublikation udgivet af Dansk Selskab for Bygningsstatik。 Lyngby, oktober 1978.
[79.1] Y. Goto and K. otsuka.
Studies on Internal Cracks Formed in Concrete Around Deformed Tension Bars. Transactions of the Japan Concrete Institute 1979.
Japan Concrete Institute, Dec. 1979.
$[79.2]$ A. W. Beeby:
The Prediction of Crack withs in Hardened Concrete.
The Structural Engineer, Jan. 1979.
Vol. 57A, No. 1.
pp. 9 - 17.
[80.1] J. J. Roberts:
Further Work on the Behaviour of Reinforced Concrete Blockwork Subject to Lateral Loading.
Cement and Concrete Association,
Technical Report TRA. 521, May 1980.
(81.1) CEB - MAPOAK.:

Cracking and Deformations.
Bulletin deInformation, no. 243, December 1981.
[83.1] B. Feddersen og M. P. Nielsen:
Revneteorier for Enakset Spændingstilstand. Afdelingen for Bærende Konstruktioner, DtH, Rapport nr. R.162, 1983.
[83.2) 3. Feddersen og Mo Nielsen:
Revneteori for Biaksiale Spændingstilstande. Afdelingen for Bærende Konstruktioner, Dth, Rapport nr. R 163, 1983.
[84.1) 解. N. Nielsen:
Limit Analysis and Concrete Plasticity. Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632, 1984.
$[84.2]$ DS A11.
Dansk Ingeniørforennings Norm for
Betonkonstruktioner.
Dansk Standard 1984.
3. Udgave, Marts 1984.
[84.3] K. Comradsen :
En Introduktion Til statistik.
Bind I \& II. 5 udgave 1984.
[85.1$]$ CER - MANUAL. :
Cracking and Deformations.
Ecole Polytechnicue Federale de Lausanne.
Suisse 1985.
[85.2] D.Dinget at. :
Stiffness and crack width of reinforced concrete members.
Bygningsstatiske Meddelelser.
Argang LVI. Nr. 4 . December 1985.

[86.1] Jo Jotrela:

Dimensioning of strain or Deformation Controlled Reinforced Concrete Beams. Technical Research Centre of Finland. Publication 33. 1986.
[86.2] K. Janovic:
Zur Rissbildung in Stahlbeton - und Spannbetonbau.
Betonwerk + Fertigteil - Technik. Heft 12/1986.
[86.3] A. M. Neville:
Properties of Concrete.
Longman Scientific \& Technical. 1986.
[88.1 D. H. Olsen:
Revner i Beton ved S.K.T. Påvirkninger. Eksamensprojekt 1988, Bind I \& II. Afdelingen for Bærende Konstruktioner, Danmarks tekniske Højskole.
-

